No Arabic abstract
The generalization properties of Gaussian processes depend heavily on the choice of kernel, and this choice remains a dark art. We present the Neural Kernel Network (NKN), a flexible family of kernels represented by a neural network. The NKN architecture is based on the composition rules for kernels, so that each unit of the network corresponds to a valid kernel. It can compactly approximate compositional kernel structures such as those used by the Automatic Statistician (Lloyd et al., 2014), but because the architecture is differentiable, it is end-to-end trainable with gradient-based optimization. We show that the NKN is universal for the class of stationary kernels. Empirically we demonstrate pattern discovery and extrapolation abilities of NKN on several tasks that depend crucially on identifying the underlying structure, including time series and texture extrapolation, as well as Bayesian optimization.
Choosing a proper set of kernel functions is an important problem in learning Gaussian Process (GP) models since each kernel structure has different model complexity and data fitness. Recently, automatic kernel composition methods provide not only accurate prediction but also attractive interpretability through search-based methods. However, existing methods suffer from slow kernel composition learning. To tackle large-scaled data, we propose a new sparse approximate posterior for GPs, MultiSVGP, constructed from groups of inducing points associated with individual additive kernels in compositional kernels. We demonstrate that this approximation provides a better fit to learn compositional kernels given empirical observations. We also provide theoretically justification on error bound when compared to the traditional sparse GP. In contrast to the search-based approach, we present a novel probabilistic algorithm to learn a kernel composition by handling the sparsity in the kernel selection with Horseshoe prior. We demonstrate that our model can capture characteristics of time series with significant reductions in computational time and have competitive regression performance on real-world data sets.
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability. We propose the harmonic kernel decomposition (HKD), which uses Fourier series to decompose a kernel as a sum of orthogonal kernels. Our variational approximation exploits this orthogonality to enable a large number of inducing points at a low computational cost. We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections, and it significantly outperforms standard variational methods in scalability and accuracy. Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
A key challenge in scaling Gaussian Process (GP) regression to massive datasets is that exact inference requires computation with a dense n x n kernel matrix, where n is the number of data points. Significant work focuses on approximating the kernel matrix via interpolation using a smaller set of m inducing points. Structured kernel interpolation (SKI) is among the most scalable methods: by placing inducing points on a dense grid and using structured matrix algebra, SKI achieves per-iteration time of O(n + m log m) for approximate inference. This linear scaling in n enables inference for very large data sets; however the cost is per-iteration, which remains a limitation for extremely large n. We show that the SKI per-iteration time can be reduced to O(m log m) after a single O(n) time precomputation step by reframing SKI as solving a natural Bayesian linear regression problem with a fixed set of m compact basis functions. With per-iteration complexity independent of the dataset size n for a fixed grid, our method scales to truly massive data sets. We demonstrate speedups in practice for a wide range of m and n and apply the method to GP inference on a three-dimensional weather radar dataset with over 100 million points.
State-of-the-art methods for scalable Gaussian processes use iterative algorithms, requiring fast matrix vector multiplies (MVMs) with the covariance kernel. The Structured Kernel Interpolation (SKI) framework accelerates these MVMs by performing efficient MVMs on a grid and interpolating back to the original space. In this work, we develop a connection between SKI and the permutohedral lattice used for high-dimensional fast bilateral filtering. Using a sparse simplicial grid instead of a dense rectangular one, we can perform GP inference exponentially faster in the dimension than SKI. Our approach, Simplex-GP, enables scaling SKI to high dimensions, while maintaining strong predictive performance. We additionally provide a CUDA implementation of Simplex-GP, which enables significant GPU acceleration of MVM based inference.
Motivated by objects such as electric fields or fluid streams, we study the problem of learning stochastic fields, i.e. stochastic processes whose samples are fields like those occurring in physics and engineering. Considering general transformations such as rotations and reflections, we show that spatial invariance of stochastic fields requires an inference model to be equivariant. Leveraging recent advances from the equivariance literature, we study equivariance in two classes of models. Firstly, we fully characterise equivariant Gaussian processes. Secondly, we introduce Steerable Conditional Neural Processes (SteerCNPs), a new, fully equivariant member of the Neural Process family. In experiments with Gaussian process vector fields, images, and real-world weather data, we observe that SteerCNPs significantly improve the performance of previous models and equivariance leads to improvements in transfer learning tasks.