No Arabic abstract
One important result from recent large integral field spectrograph (IFS) surveys is that the intrinsic velocity dispersion of galaxies traced by star-forming gas increases with redshift. Massive, rotation-dominated discs are already in place at z~2, but they are dynamically hotter than spiral galaxies in the local Universe. Although several plausible mechanisms for this elevated velocity dispersion (e.g. star formation feedback, elevated gas supply, or more frequent galaxy interactions) have been proposed, the fundamental driver of the velocity dispersion enhancement at high redshift remains unclear. We investigate the origin of this kinematic evolution using a suite of cosmological simulations from the FIRE (Feedback In Realistic Environments) project. Although IFS surveys generally cover a wider range of stellar masses than in these simulations, the simulated galaxies show trends between intrinsic velocity dispersion, SFR, and redshift in agreement with observations. In both the observed and simulated galaxies, intrinsic velocity dispersion is positively correlated with SFR. Intrinsic velocity dispersion increases with redshift out to z~1 and then flattens beyond that. In the FIRE simulations, intrinsic velocity dispersion can vary significantly on timescales of <100 Myr. These variations closely mirror the time evolution of the SFR and gas inflow rate. By cross-correlating pairs of intrinsic velocity dispersion, gas inflow rate, and SFR, we show that increased gas inflow leads to subsequent enhanced star formation, and enhancements in intrinsic velocity dispersion tend to temporally coincide with increases in gas inflow rate and SFR.
We analyze the intrinsic velocity dispersion properties of 648 star-forming galaxies observed by the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, to explore the relation of intrinsic gas velocity dispersions with star formation rates (SFRs), SFR surface densities ($rm{Sigma_{SFR}}$), stellar masses and stellar mass surface densities ($rm{Sigma_{*}}$). By combining with high z galaxies, we found that there is a good correlation between the velocity dispersion and the SFR as well as $rm{Sigma_{SFR}}$. But the correlation between the velocity dispersion and the stellar mass as well as $rm{Sigma_{*}}$ is moderate. By comparing our results with predictions of theoretical models, we found that the energy feedback from star formation processes alone and the gravitational instability alone can not fully explain simultaneously the observed velocity-dispersion/SFR and velocity-dispersion/$rm{Sigma_{SFR}}$ relationships.
In this paper we study the molecular gas content of a representative sample of 67 of the most massive early-type galaxies in the local universe, drawn uniformly from the MASSIVE survey. We present new IRAM-30m telescope observations of 30 of these galaxies, allowing us to probe the molecular gas content of the entire sample to a fixed molecular-to-stellar mass fraction of 0.1%. The total detection rate in this representative sample is 25$^{+5.9}_{-4.4}$%, and by combining the MASSIVE and ATLAS$^{rm 3D}$ molecular gas surveys we find a joint detection rate of 22.4$^{+2.4}_{-2.1}$%. This detection rate seems to be independent of galaxy mass, size, position on the fundamental plane, and local environment. We show here for the first time that true slow rotators can host molecular gas reservoirs, but the rate at which they do so is significantly lower than for fast-rotators. Objects with a higher velocity dispersion at fixed mass (a higher kinematic bulge fraction) are less likely to have detectable molecular gas, and where gas does exist, have lower molecular gas fractions. In addition, satellite galaxies in dense environments have $approx$0.6 dex lower molecular gas-to-stellar mass ratios than isolated objects. In order to interpret these results we created a toy model, which we use to constrain the origin of the gas in these systems. We are able to derive an independent estimate of the gas-rich merger rate in the low-redshift universe. These gas rich mergers appear to dominate the supply of gas to ETGs, but stellar mass loss, hot halo cooling and transformation of spiral galaxies also play a secondary role.
We present molecular gas mass estimates for a sample of 13 local galaxies whose kinematic and star forming properties closely resemble those observed in $zapprox 1.5$ main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line and Herschel Space Observatory observations of the dust emission both suggest molecular gas mass fractions of ~20%. Moreover, dust emission modeling finds $T_{dust}<$30K, suggesting a cold dust distribution compared to their high infrared luminosity. The gas mass estimates argue that $zsim$0.1 DYNAMO galaxies not only share similar kinematic properties with high-z disks, but they are also similarly rich in molecular material. Pairing the gas mass fractions with existing kinematics reveals a linear relationship between $f_{gas}$ and $sigma$/$v_{c}$, consistent with predictions from stability theory of a self-gravitating disk. It thus follows that high gas velocity dispersions are a natural consequence of large gas fractions. We also find that the systems with lowest depletion times ($sim$0.5 Gyr) have the highest ratios of $sigma$/$v_{c}$ and more pronounced clumps, even at the same high molecular gas fraction.
Rings in S0s are enigmatic features which can however betray the evolutionary paths of particular galaxies. We have undertaken long-slit spectroscopy of five lenticular galaxies with UV-bright outer rings. The observations have been made with the Southern African Large Telescope (SALT) to reveal the kinematics, chemistry, and the ages of the stellar populations and the gas characteristics in the rings and surrounding disks. Four of the five rings are also bright in the H-alpha emission line, and the spectra of the gaseous rings extracted around the maxima of the H-alpha equivalent width reveal excitation by young stars betraying current star formation in the rings. The integrated level of this star formation is 0.1-0.2 solar mass per year, with the outstanding value of 1 solar mass per year in NGC 7808. The difference of chemical composition between the ionized gas of the rings which demonstrate nearly solar metallicity and the underlying stellar disks which are metal-poor implies recent accretion of the gas and star formation ignition; the star formation history estimated by using different star formation indicators implies that the star formation rate decreases with e-folding time of less than 1 Gyr. In NGC 809 where the UV-ring is well visible but the H-alpha emission line excited by massive stars is absent, the star formation has already ceased.
We present results of a survey of 14 star-forming regions from the Perseus spiral arm in CS(2-1) and 13CO(1-0) lines with the Onsala Space Observatory 20 m telescope. Maps of 10 sources in both lines were obtained. For the remaining sources a map in just one line or a single-point spectrum were obtained. On the basis of newly obtained and published observational data we consider the relation between velocities of the quasi-thermal CS(2-1) line and 6.7 GHz methanol maser line in 24 high-mass star-forming regions in the Perseus arm. We show that, surprisingly, velocity ranges of 6.7 GHz methanol maser emission are predominantly red-shifted with respect to corresponding CS(2-1) line velocity ranges in the Perseus arm. We suggest that the predominance of the red-shifted masers in the Perseus arm could be related to the alignment of gas flows caused by the large-scale motions in the Galaxy. Large-scale galactic shock related to the spiral structure is supposed to affect the local kinematics of the star-forming regions. Part of the Perseus arm, between galactic longitudes from 85deg to 124deg, does not contain blue-shifted masers at all. Radial velocities of the sources are the greatest in this particular part of the arm, so the velocity difference is clearly pronounced. 13CO(1-0) and CS(2-1) velocity maps of G183.35-0.58 show gas velocity difference between the center and the periphery of the molecular clump up to 1.2 km/s. Similar situation is likely to occur in G85.40-0.00. This can correspond to the case when the large-scale shock wave entrains the outer parts of a molecular clump in motion while the dense central clump is less affected by the shock.