Do you want to publish a course? Click here

Modeling the atomic-to-molecular transition in cosmological simulations of galaxy formation

117   0   0.0 ( 0 )
 Added by Benedikt Diemer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Large-scale cosmological simulations of galaxy formation currently do not resolve the densities at which molecular hydrogen forms, implying that the atomic-to-molecular transition must be modeled either on the fly or in postprocessing. We present an improved postprocessing framework to estimate the abundance of atomic and molecular hydrogen and apply it to the IllustrisTNG simulations. We compare five different models for the atomic-to-molecular transition, including empirical, simulation-based, and theoretical prescriptions. Most of these models rely on the surface density of neutral hydrogen and the ultraviolet (UV) flux in the Lyman-Werner band as input parameters. Computing these quantities on the kiloparsec scales resolved by the simulations emerges as the main challenge. We show that the commonly used Jeans length approximation to the column density of a system can be biased and exhibits large cell-to-cell scatter. Instead, we propose to compute all surface quantities in face-on projections and perform the modeling in two dimensions. In general, the two methods agree on average, but their predictions diverge for individual galaxies and for models based on the observed midplane pressure of galaxies. We model the UV radiation from young stars by assuming a constant escape fraction and optically thin propagation throughout the galaxy. With these improvements, we find that the five models for the atomic-to-molecular transition roughly agree on average but that the details of the modeling matter for individual galaxies and the spatial distribution of molecular hydrogen. We emphasize that the estimated molecular fractions are approximate due to the significant systematic uncertainties.



rate research

Read More

237 - Mark Vogelsberger 2019
Over the last decades, cosmological simulations of galaxy formation have been instrumental for advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the non-linear evolution of galaxies modeling a variety of physical processes over an enormous range of scales. A better understanding of the physics relevant for shaping galaxies, improved numerical methods, and increased computing power have led to simulations that can reproduce a large number of observed galaxy properties. Modern simulations model dark matter, dark energy, and ordinary matter in an expanding space-time starting from well-defined initial conditions. The modeling of ordinary matter is most challenging due to the large array of physical processes affecting this matter component. Cosmological simulations have also proven useful to study alternative cosmological models and their impact on the galaxy population. This review presents a concise overview of the methodology of cosmological simulations of galaxy formation and their different applications.
Cosmological simulations of galaxies have typically produced too many stars at early times. We study the global and morphological effects of radiation pressure (RP) in eight pairs of high-resolution cosmological galaxy formation simulations. We find that the additional feedback suppresses star formation globally by a factor of ~2. Despite this reduction, the simulations still overproduce stars by a factor of ~2 with respect to the predictions provided by abundance matching methods for halos more massive than 5E11 Msun/h (Behroozi, Wechsler & Conroy 2013). We also study the morphological impact of radiation pressure on our simulations. In simulations with RP the average number of low mass clumps falls dramatically. Only clumps with stellar masses Mclump/Mdisk <= 5% are impacted by the inclusion of RP, and RP and no-RP clump counts above this range are comparable. The inclusion of RP depresses the contrast ratios of clumps by factors of a few for clump masses less than 5% of the disk masses. For more massive clumps, the differences between and RP and no-RP simulations diminish. We note however, that the simulations analyzed have disk stellar masses below about 2E10 Msun/h. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. However, since massive clumps survive the inclusion of RP and are found in our mock observations, we do not find a disagreement between simulations of our clumpy galaxies and observations of clumpy galaxies. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps.
We study the implementation of mechanical feedback from supernovae (SNe) and stellar mass loss in galaxy simulations, within the Feedback In Realistic Environments (FIRE) project. We present the FIRE-2 algorithm for coupling mechanical feedback, which can be applied to any hydrodynamics method (e.g. fixed-grid, moving-mesh, and mesh-less methods), and black hole as well as stellar feedback. This algorithm ensures manifest conservation of mass, energy, and momentum, and avoids imprinting preferred directions on the ejecta. We show that it is critical to incorporate both momentum and thermal energy of mechanical ejecta in a self-consistent manner, accounting for SNe cooling radii when they are not resolved. Using idealized simulations of single SN explosions, we show that the FIRE-2 algorithm, independent of resolution, reproduces converged solutions in both energy and momentum. In contrast, common fully-thermal (energy-dump) or fully-kinetic (particle-kicking) schemes in the literature depend strongly on resolution: when applied at mass resolution >100 solar masses, they diverge by orders-of-magnitude from the converged solution. In galaxy-formation simulations, this divergence leads to orders-of-magnitude differences in galaxy properties, unless those models are adjusted in a resolution-dependent way. We show that all models that individually time-resolve SNe converge to the FIRE-2 solution at sufficiently high resolution. However, in both idealized single-SN simulations and cosmological galaxy-formation simulations, the FIRE-2 algorithm converges much faster than other sub-grid models without re-tuning parameters.
183 - Maria E. De Rossi 2015
The evolution of the metal content of galaxies and its relations to other global properties [such as total stellar mass (M*), circular velocity, star formation rate (SFR), halo mass, etc.] provides important constraints on models of galaxy formation. Here we examine the evolution of metallicity scaling relations of simulated galaxies in the Galaxies-Intergalactic Medium Interaction Calculation suite of cosmological simulations. We make comparisons to observations of the correlation of gas-phase abundances with M* (the mass-metallicity relation, MZR), as well as with both M* and SFR or gas mass fraction (the so-called 3D fundamental metallicity relations, FMRs). The simulated galaxies follow the observed local MZR and FMRs over an order of magnitude in M*, but overpredict the metallicity of massive galaxies (log M* > 10.5), plausibly due to inefficient feedback in this regime. We discuss the origin of the MZR and FMRs in the context of galactic outflows and gas accretion. We examine the evolution of mass-metallicity relations defined using different elements that probe the three enrichment channels (SNII, SNIa, and AGB stars). Relations based on elements produced mainly by SNII evolve weakly, whereas those based on elements produced preferentially in SNIa/AGB exhibit stronger evolution, due to the longer timescales associated with these channels. Finally, we compare the relations of central and satellite galaxies, finding systematically higher metallicities for satellites, as observed. We show this is due to the removal of the metal poor gas reservoir that normally surrounds galaxies and acts to dilute their gas-phase metallicity (via cooling/accretion onto the disk), but is lost due to ram pressure stripping for satellites.
Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resolution dependent scalings. We present a sub-resolution model representing the three major phases of supernova blast wave evolution $-$free expansion, energy conserving Sedov-Taylor, and momentum conserving snowplow$-$ with energy scalings adopted from high-resolution interstellar-medium simulations in both uniform and multiphase media. We allow for the effects of significantly enhanced SN remnant propagation in a multiphase medium with the cooling radius scaling with the hot volume fraction, $f_{mathrm{hot}}$, as $(1 - f_{mathrm{hot}})^{-4/5}$. We also include winds from young massive stars and AGB stars, Stromgren sphere gas heating by massive stars, and a gas cooling limiting mechanism driven by radiative recombination of dense HII regions. We present initial tests for isolated Milky-Way like systems simulated with the GADGET based code SPHgal with improved SPH prescription. Compared to pure thermal SN input, the model significantly suppresses star formation at early epochs, with star formation extended both in time and space in better accord with observations. Compared to models with pure thermal SN feedback, the age at which half the stellar mass is assembled increases by a factor of 2.4, and the mass loading parameter and gas outflow rate from the galactic disk increase by a factor of 2. Simulation results are converged for a two order of magnitude variation in particle mass in the range (1.3$-$130)$times 10^4$ solar masses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا