Do you want to publish a course? Click here

Unsupervised Attention-guided Image to Image Translation

298   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Current unsupervised image-to-image translation techniques struggle to focus their attention on individual objects without altering the background or the way multiple objects interact within a scene. Motivated by the important role of attention in human perception, we tackle this limitation by introducing unsupervised attention mechanisms that are jointly adversarialy trained with the generators and discriminators. We demonstrate qualitatively and quantitatively that our approach is able to attend to relevant regions in the image without requiring supervision, and that by doing so it achieves more realistic mappings compared to recent approaches.



rate research

Read More

Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style representation. Thus, translation models seek to preserve the content of source images while changing the style to a target visual domain. However, synthesizing new images is extremely challenging especially in multi-domain translations, as the network has to compose content and style to generate reliable and diverse images in multiple domains. In this paper we propose the use of an image retrieval system to assist the image-to-image translation task. First, we train an image-to-image translation model to map images to multiple domains. Then, we train an image retrieval model using real and generated images to find images similar to a query one in content but in a different domain. Finally, we exploit the image retrieval system to fine-tune the image-to-image translation model and generate higher quality images. Our experiments show the effectiveness of the proposed solution and highlight the contribution of the retrieval network, which can benefit from additional unlabeled data and help image-to-image translation models in the presence of scarce data.
Unsupervised image translation aims to learn the transformation from a source domain to another target domain given unpaired training data. Several state-of-the-art works have yielded impressive results in the GANs-based unsupervised image-to-image translation. It fails to capture strong geometric or structural changes between domains, or it produces unsatisfactory result for complex scenes, compared to local texture mapping tasks such as style transfer. Recently, SAGAN (Han Zhang, 2018) showed that the self-attention network produces better results than the convolution-based GAN. However, the effectiveness of the self-attention network in unsupervised image-to-image translation tasks have not been verified. In this paper, we propose an unsupervised image-to-image translation with self-attention networks, in which long range dependency helps to not only capture strong geometric change but also generate details using cues from all feature locations. In experiments, we qualitatively and quantitatively show superiority of the proposed method compared to existing state-of-the-art unsupervised image-to-image translation task. The source code and our results are online: https://github.com/itsss/img2img_sa and http://itsc.kr/2019/01/24/2019_img2img_sa
Unsupervised image-to-image translation methods learn to map images in a given class to an analogous image in a different class, drawing on unstructured (non-registered) datasets of images. While remarkably successful, current methods require access to many images in both source and destination classes at training time. We argue this greatly limits their use. Drawing inspiration from the human capability of picking up the essence of a novel object from a small number of examples and generalizing from there, we seek a few-shot, unsupervised image-to-image translation algorithm that works on previously unseen target classes that are specified, at test time, only by a few example images. Our model achieves this few-shot generation capability by coupling an adversarial training scheme with a novel network design. Through extensive experimental validation and comparisons to several baseline methods on benchmark datasets, we verify the effectiveness of the proposed framework. Our implementation and datasets are available at https://github.com/NVlabs/FUNIT .
Manipulating visual attributes of images through human-written text is a very challenging task. On the one hand, models have to learn the manipulation without the ground truth of the desired output. On the other hand, models have to deal with the inherent ambiguity of natural language. Previous research usually requires either the user to describe all the characteristics of the desired image or to use richly-annotated image captioning datasets. In this work, we propose a novel unsupervised approach, based on image-to-image translation, that alters the attributes of a given image through a command-like sentence such as change the hair color to black. Contrarily to state-of-the-art approaches, our model does not require a human-annotated dataset nor a textual description of all the attributes of the desired image, but only those that have to be modified. Our proposed model disentangles the image content from the visual attributes, and it learns to modify the latter using the textual description, before generating a new image from the content and the modified attribute representation. Because text might be inherently ambiguous (blond hair may refer to different shadows of blond, e.g. golden, icy, sandy), our method generates multiple stochast
Every recent image-to-image translation model inherently requires either image-level (i.e. input-output pairs) or set-level (i.e. domain labels) supervision. However, even set-level supervision can be a severe bottleneck for data collection in practice. In this paper, we tackle image-to-image translation in a fully unsupervised setting, i.e., neither paired images nor domain labels. To this end, we propose a truly unsupervised image-to-image translation model (TUNIT) that simultaneously learns to separate image domains and translates input images into the estimated domains. Experimental results show that our model achieves comparable or even better performance than the set-level supervised model trained with full labels, generalizes well on various datasets, and is robust against the choice of hyperparameters (e.g. the preset number of pseudo domains). Furthermore, TUNIT can be easily extended to semi-supervised learning with a few labeled data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا