No Arabic abstract
International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet been performed. In this paper, we present a comprehensive analysis of biomedical image analysis challenges conducted up to now. We demonstrate the importance of challenges and show that the lack of quality control has critical consequences. First, reproducibility and interpretation of the results is often hampered as only a fraction of relevant information is typically provided. Second, the rank of an algorithm is generally not robust to a number of variables such as the test data used for validation, the ranking scheme applied and the observers that make the reference annotations. To overcome these problems, we recommend best practice guidelines and define open research questions to be addressed in the future.
Privacy and nondiscrimination are related but different. We make this observation precise in two ways. First, we show that both privacy and nondiscrimination have t
The success of deep learning has been witnessed as a promising technique for computer-aided biomedical image analysis, due to end-to-end learning framework and availability of large-scale labelled samples. However, in many cases of biomedical image analysis, deep learning techniques suffer from the small sample learning (SSL) dilemma caused mainly by lack of annotations. To be more practical for biomedical image analysis, in this paper we survey the key SSL techniques that help relieve the suffering of deep learning by combining with the development of related techniques in computer vision applications. In order to accelerate the clinical usage of biomedical image analysis based on deep learning techniques, we intentionally expand this survey to include the explanation methods for deep models that are important to clinical decision making. We survey the key SSL techniques by dividing them into five categories: (1) explanation techniques, (2) weakly supervised learning techniques, (3) transfer learning techniques, (4) active learning techniques, and (5) miscellaneous techniques involving data augmentation, domain knowledge, traditional shallow methods and attention mechanism. These key techniques are expected to effectively support the application of deep learning in clinical biomedical image analysis, and furtherly improve the analysis performance, especially when large-scale annotated samples are not available. We bulid demos at https://github.com/PengyiZhang/MIADeepSSL.
Intuitively, obedience -- following the order that a human gives -- seems like a good property for a robot to have. But, we humans are not perfect and we may give orders that are not best aligned to our preferences. We show that when a human is not perfectly rational then a robot that tries to infer and act according to the humans underlying preferences can always perform better than a robot that simply follows the humans literal order. Thus, there is a tradeoff between the obedience of a robot and the value it can attain for its owner. We investigate how this tradeoff is impacted by the way the robot infers the humans preferences, showing that some methods err more on the side of obedience than others. We then analyze how performance degrades when the robot has a misspecified model of the features that the human cares about or the level of rationality of the human. Finally, we study how robots can start detecting such model misspecification. Overall, our work suggests that there might be a middle ground in which robots intelligently decide when to obey human orders, but err on the side of obedience.
It is of vital importance to understand and track the dynamics of rapidly unfolding epidemics. The health and economic consequences of the current COVID-19 pandemic provide a poignant case. Here we point out that since they are based on differential equations, the most widely used models of epidemic spread are plagued by an approximation that is not justified in the case of the current COVID-19 pandemic. Taking the example of data from New York City, we show that currently used models significantly underestimate the initial basic reproduction number ($R_0$). The correct description, based on integral equations, can be implemented in most of the reported models and it much more accurately accounts for the dynamics of the epidemic after sharp changes in $R_0$ due to restrictive public congregation measures. It also provides a novel way to determine the incubation period, and most importantly, as we demonstrate for several countries, this method allows an accurate monitoring of $R_0$ and thus a fine-tuning of any restrictive measures. Integral equation based models do not only provide the conceptually correct description, they also have more predictive power than differential equation based models, therefore we do not see any reason for using the latter.
As the senior population rapidly increases, it is challenging yet crucial to provide effective long-term care for seniors who live at home or in senior care facilities. Smart senior homes, which have gained widespread interest in the healthcare community, have been proposed to improve the well-being of seniors living independently. In particular, non-intrusive, cost-effective sensors placed in these senior homes enable gait characterization, which can provide clinically relevant information including mobility level and early neurodegenerative disease risk. In this paper, we present a method to perform gait analysis from a single camera placed within the home. We show that we can accurately calculate various gait parameters, demonstrating the potential for our system to monitor the long-term gait of seniors and thus aid clinicians in understanding a patients medical profile.