Determining the Generalized Hamming Weight Hierarchy of the Binary Projective Reed-Muller Code


Abstract in English

Projective Reed-Muller codes correspond to subcodes of the Reed-Muller code in which the polynomials being evaluated to yield codewords, are restricted to be homogeneous. The Generalized Hamming Weights (GHW) of a code ${cal C}$, identify for each dimension $ u$, the smallest size of the support of a subcode of ${cal C}$ of dimension $ u$. The GHW of a code are of interest in assessing the vulnerability of a code in a wiretap channel setting. It is also of use in bounding the state complexity of the trellis representation of the code. In prior work by the same authors, a code-shortening algorithm was employed to derive upper bounds on the GHW of binary projective, Reed-Muller (PRM) codes. In the present paper, we derive a matching lower bound by adapting the proof techniques used originally for Reed-Muller (RM) codes by Wei. This results in a characterization of the GHW hierarchy of binary PRM codes.

Download