Do you want to publish a course? Click here

Ising Models with Holes: Crossover Behavior

132   0   0.0 ( 0 )
 Added by Jacques H.H. Perk
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to investigate the effects of connectivity and proximity in the specific heat, a special class of exactly solvable planar layered Ising models has been studied in the thermodynamic limit. The Ising models consist of repeated uniform horizontal strips of width $m$ connected by sequences of vertical strings of length $n$ mutually separated by distance $N$, with $N=1,2$ and $3$. We find that the critical temperature $T_c(N,m,n)$, arising from the collective effects, decreases as $n$ and $N$ increase, and increases as $m$ increases, as it should be. The amplitude $A(N,m,n)$ of the logarithmic divergence at the bulk critical temperature $T_c(N,m,n)$ becomes smaller as $n$ and $m$ increase. A rounded peak, with size of order $ln m$ and signifying the one-dimensional behavior of strips of finite width $m$, appears when $n$ is large enough. The appearance of these rounded peaks does not depend on $m$ as much, but depends rather more on $N$ and $n$, which is rather perplexing. Moreover, for fixed $m$ and $n$, the specific heats are not much different for different $N$. This is a most surprising result. For $N=1$, the spin-spin correlation in the center row of each strip can be written as a Toeplitz determinant with a generating function which is much more complicated than in Onsagers Ising model. The spontaneous magnetization in that row can be calculated numerically and the spin-spin correlation is shown to have two-dimensional Ising behavior.



rate research

Read More

In our previous works on infinite horizontal Ising strips of width $m$ alternating with layers of strings of Ising chains of length $n$, we found the surprising result that the specific heats are not much different for different values of $N$, the separation of the strings. For this reason, we study here for $N=1$ the spin-spin correlation in the central row of each strip, and also the central row of a strings layer. We show that these can be written as a Toeplitz determinants. Their generating functions are ratios of two polynomials, which in the limit of infinite vertical size become square roots of polynomials whose degrees are $m+1$ where $m$ is the size of the strips. We find the asymptotic behaviors near the critical temperature to be two-dimensional Ising-like. But in regions not very close to criticality the behavior may be different for different $m$ and $n$. Finally, in the appendix we shall present results for generating functions in more general models.
We study the phase diagram and critical properties of quantum Ising chains with long-range ferromagnetic interactions decaying in a power-law fashion with exponent $alpha$, in regimes of direct interest for current trapped ion experiments. Using large-scale path integral Monte Carlo simulations, we investigate both the ground-state and the nonzero-temperature regimes. We identify the phase boundary of the ferromagnetic phase and obtain accurate estimates for the ferromagnetic-paramagnetic transition temperatures. We further determine the critical exponents of the respective transitions. Our results are in agreement with existing predictions for interaction exponents $alpha > 1$ up to small deviations in some critical exponents. We also address the elusive regime $alpha < 1$, where we find that the universality class of both the ground-state and nonzero-temperature transition is consistent with the mean-field limit at $alpha = 0$. Our work not only contributes to the understanding of the equilibrium properties of long-range interacting quantum Ising models, but can also be important for addressing fundamental dynamical aspects, such as issues concerning the open question of thermalization in such models.
Recent numerical studies of the susceptibility of the three-dimensional Ising model with various interaction ranges have been analyzed with a crossover model based on renormalization-group matching theory. It is shown that the model yields an accurate description of the crossover function for the susceptibility.
319 - Marco Picco 2012
We present results of a Monte Carlo study for the ferromagnetic Ising model with long range interactions in two dimensions. This model has been simulated for a large range of interaction parameter $sigma$ and for large sizes. We observe that the results close to the change of regime from intermediate to short range do not agree with the renormalization group predictions.
136 - Yunqing Ouyang , Youjin Deng , 2018
We investigate the influence of the range of interactions in the two-dimensional bond percolation model, by means of Monte Carlo simulations. We locate the phase transitions for several interaction ranges, as expressed by the number $z$ of equivalent neighbors. We also consider the $z to infty$ limit, i.e., the complete graph case, where percolation bonds are allowed between each pair of sites, and the model becomes mean-field-like. All investigated models with finite $z$ are found to belong to the short-range universality class. There is no evidence of a tricritical point separating the short-range and long-range behavior, such as is known to occur for $q=3$ and $q=4$ Potts models. We determine the renormalization exponent describing a finite-range perturbation at the mean-field limit as $y_r approx 2/3$. Its relevance confirms the continuous crossover from mean-field percolation universality to short-range percolation universality. For finite interaction ranges, we find approximate relations between the coordination numbers and the amplitudes of the leading correction terms as found in the finite-size scaling analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا