Do you want to publish a course? Click here

Why Post-Starburst Galaxies are Now Quiescent

81   0   0.0 ( 0 )
 Added by Decker French
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Post-starburst or E+A galaxies are rapidly transitioning from star-forming to quiescence. While the current star formation rate of post-starbursts is already at the level of early type galaxies, we recently discovered that many have large CO-traced molecular gas reservoirs consistent with normal star forming galaxies. These observations raise the question of why these galaxies have such low star formation rates. Here we present an ALMA search for the denser gas traced by HCN (1--0) and HCO+ (1--0) in two CO-luminous, quiescent post-starburst galaxies. Intriguingly, we fail to detect either molecule. The upper limits are consistent with the low star formation rates and with early-type galaxies. The HCN/CO luminosity ratio upper limits are low compared to star-forming and even many early type galaxies. This implied low dense gas mass fraction explains the low star formation rates relative to the CO-traced molecular gas and suggests the state of the gas in post-starburst galaxies is unusual, with some mechanism inhibiting its collapse to denser states. We conclude that post-starbursts galaxies are now quiescent because little dense gas is available, in contrast to the significant CO-traced lower density gas reservoirs that still remain.



rate research

Read More

181 - M. M. Pawlik 2019
About 35 years ago a class of galaxies with unusually strong Balmer absorption lines and weak emission lines was discovered in distant galaxy clusters. These objects, alternatively referred to as post-starburst, E+A or k+a galaxies, are now known to occur in all environments and at all redshifts, with many exhibiting compact morphologies and low-surface brightness features indicative of past galaxy mergers. They are commonly thought to represent galaxies that are transitioning from blue to red sequence, making them critical to our understanding of the origins of galaxy bimodality. However, recent observational studies have questioned this simple interpretation. From observations alone, it is challenging to disentangle the different mechanisms that lead to the quenching of star formation in galaxies. Here we present examples of three different evolutionary pathways that lead to galaxies with strong Balmer absorption lines in the EAGLE simulation: classical blue-to-red quenching, blue-to-blue cycle and red-to-red rejuvenation. The first two are found in both post-starburst galaxies and galaxies with truncated star formation. Each pathway is consistent with scenarios hypothesised for observational samples. The fact that post-starburst signatures can be attained via various evolutionary channels explains the diversity of observed properties, and lends support to the idea that slower quenching channels are important at low redshift.
Brightest Cluster Galaxies (BCGs) are mostly elliptical galaxies and very rarely have prominent star formation. We found that five out of 8,812 BCGs are E+A (i.e. post-starburst) galaxies, having the H$delta$~absorption line with an equivalent width $>2.5AA$ and no distinct emission lines in [O II] and H$alpha$. The E+A features we identified from the BCGs for the first time are not as significant as those in general galaxies, indicating that historically the star formation were not very violent.
Post starburst E+A galaxies are thought to have experienced a significant starburst that was quenched abruptly. Their disturbed, bulge-dominated morphologies suggest that they are merger remnants. We present ESI/Keck observations of SDSS J132401.63+454620.6, a post starburst galaxy at redshift z = 0.125, with a starburst that started 400 Myr ago, and other properties, like star formation rate (SFR) consistent with what is measured in ultra luminous infrared galaxies (ULRIGs). The galaxy shows both zero velocity narrow lines, and blueshifted broader Balmer and forbidden emission lines (FWHM=1350 +- 240 km/s). The narrow component is consistent with LINER-like emission, and the broader component with Seyfert-like emission, both photoionized by an active galactic nucleus (AGN) whose properties we measure and model. The velocity dispersion of the broad component exceeds the escape velocity, and we estimate the mass outflow rate to be in the range 4-120 Mo/yr. This is the first reported case of AGN-driven outflows, traced by ionized gas, in post starburst E+A galaxies. We show, by ways of a simple model, that the observed AGN-driven winds can consistently evolve a ULIRG into the observed galaxy. Our findings reinforce the evolutionary scenario where the more massive ULIRGs are quenched by negative AGN feedback, evolve first to post starburst galaxies, and later become typical red and dead ellipticals.
Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses SDSS, GALEX, and WISE observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts in the narrow mass range $log M(M_odot) = 10.3-10.7$, and identifies transiting post-starbursts which are intermediate between these two populations. In this mass range, $sim 0.3%$ of galaxies are starbursts, $sim 0.1%$ are quenched post-starbursts, and $sim 0.5%$ are the transiting types in between. The transiting post-starbursts have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The AGN fraction, as estimated from optical line ratios, of these post-starbursts is about 3 times higher ($gtrsim 36 pm 8 %$) than that of normal star-forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of $gtrsim 200 pm 100$ Myr), in agreement with previous studies. The time delay is inferred by comparing the broad-band near NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust-obscured than normal star-forming galaxies in the same mass range. About $20%$ of the starbursts and $15%$ of the transiting post-starbursts can be classified as the Dust-Obscured Galaxies (DOGs), while only $0.8%$ of normal galaxies are DOGs.The time delay between the starburst phase and AGN activity suggests that AGN do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation during the post-starburst phase.
Post-starburst galaxies can be identified via the presence of prominent Hydrogen Balmer absorption lines in their spectra. We present a comprehensive study of the origin of strong Balmer lines in a volume-limited sample of 189 galaxies with $0.01<z<0.05$, $log(mbox{M}_{star}/mbox{M}_{odot})>9.5$ and projected axis ratio $b/a>0.32$. We explore their structural properties, environments, emission lines and star formation histories, and compare them to control samples of star-forming and quiescent galaxies, and simulated galaxy mergers. Excluding contaminants, in which the strong Balmer lines are most likely caused by dust-star geometry, we find evidence for three different pathways through the post-starburst phase, with most events occurring in intermediate-density environments: (1) a significant disruptive event, such as a gas-rich major merger, causing a starburst and growth of a spheroidal component, followed by quenching of the star formation (70% of post-starburst galaxies at $9.5<log(mbox{M}_{star}/mbox{M}_{odot})<10.5$ and 60% at $log(mbox{M}_{star}/mbox{M}_{odot})>10.5$); (2) at $9.5<log(mbox{M}_{star}/mbox{M}_{odot})<10.5$, stochastic star formation in blue-sequence galaxies, causing a weak burst and subsequent return to the blue sequence (30%); (3) at $log(mbox{M}_{star}/mbox{M}_{odot})>10.5$, cyclic evolution of quiescent galaxies which gradually move towards the high-mass end of the red sequence through weak starbursts, possibly as a result of a merger with a smaller gas-rich companion (40%). Our analysis suggests that AGN are `on for $50%$ of the duration of the post-starburst phase, meaning that traditional samples of post-starburst galaxies with strict emission line cuts will be at least $50%$ incomplete due to the exclusion of narrow-line AGN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا