Fast K-Means Clustering with Anderson Acceleration


Abstract in English

We propose a novel method to accelerate Lloyds algorithm for K-Means clustering. Unlike previous acceleration approaches that reduce computational cost per iterations or improve initialization, our approach is focused on reducing the number of iterations required for convergence. This is achieved by treating the assignment step and the update step of Lloyds algorithm as a fixed-point iteration, and applying Anderson acceleration, a well-established technique for accelerating fixed-point solvers. Classical Anderson acceleration utilizes m previous iterates to find an accelerated iterate, and its performance on K-Means clustering can be sensitive to choice of m and the distribution of samples. We propose a new strategy to dynamically adjust the value of m, which achieves robust and consistent speedups across different problem instances. Our method complements existing acceleration techniques, and can be combined with them to achieve state-of-the-art performance. We perform extensive experiments to evaluate the performance of the proposed method, where it outperforms other algorithms in 106 out of 120 test cases, and the mean decrease ratio of computational time is more than 33%.

Download