Prediction of new multiferroic and magnetoelectric material Fe3Se4


Abstract in English

Nowdays, multiferroic materials with magnetoelectric coupling have many real-world applications in the fields of novel memory devices. It is challenging is to create multiferroic materials with strongly coupled ferroelectric and ferrimagnetic orderings at room temperature. The single crystal of ferric selenide (Fe3Se4) shows type-II multiferroic due to the coexistence of ferroelectric as well as magnetic ordering at room temperature. We have investigated the lattice instability, electronic structure, ferroelectric, ferrimagnetic ordering and transport properties of ferroelectric metal Fe3Se4. The density of states shows considerable hybridization of Fe-3d and Se-4p states near the Fermi level confirming its metallic behavior. The magnetic moments of Fe cations follow a type-II ferrimagnetic and ferroelectric ordering with a calculated total magnetic moment of 4.25 per unit cell (Fe6Se8). The strong covalent bonding nature of Fe-Se leads to its ferroelectric properties. In addition, the symmetry analysis suggests that tilting of Fe sub-lattice with 3d-t2g orbital ordering is due to the Jahn-Teller (JT) distortion. This study provides further insight in the development of spintronics related technology using multiferroic materials.

Download