Do you want to publish a course? Click here

Initial features of an X-class flare observed with SUMER and TRACE

120   0   0.0 ( 0 )
 Added by Tongjiang Wang Dr.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A class X1.5 flare started on the solar limb at 00:43 UT on 21 April 2002, which was associated with a CME observed at 01:27 UT by LASCO C2. The coordinated analyses of this flare include TRACE 195 {AA} images and SUMER spectra in lines of Fe XXI, Fe XII, and C II. We find that: 1) The flare began with a jet seen by TRACE, which was detected by SUMER in the C II line as a strong brightening with blue shifts up to 170 km s$^{-1}$. At that time only weak emission was detected in Fe XII and Fe XXI. 2) Subsequently, a weak looplike brightening started south of the jet, moving outwards with an average speed of about 150 km s$^{-1}$. The SUMER spectra responded this moving loop as separatingly brightenings, visible only in the Fe XXI line. The southwards moving component contains red- and blue-shifted emission features and has an apparent speed of $sim$120 km s$^{-1}$. The absence of signatures in Fe XII and C II lines indicates that the moving weak loop seen by TRACE corresponds to the emission from very hot plasma, in a blend line in the 195 {AA} bandpass due to Fe XXIV formed at T > 10 MK. 3) The trigger mechanism of the flare and associated CME can be interpreted in the same way as that proposed by Wang et al. (2002) for an event with similar initial features.



rate research

Read More

Using mainly the 1600 angstrom continuum channel, and also the 1216 angstrom Lyman-alpha channel (which includes some UV continuum and C IV emission), aboard the TRACE satellite, we observed the complete lifetime of a transient, bright chromospheric loop. Simultaneous observations with the SUMER instrument aboard the SOHO spacecraft revealed interesting material velocities through the Doppler effect existing above the chromospheric loop imaged with TRACE, possibly corresponding to extended non-visible loops, or the base of an X-ray jet.
The GOES X1.5 class flare that occurred on August 30,2002 at 1327:30 UT is one of the few events detected so far at submillimeter wavelengths. We present a detailed analysis of this flare combining radio observations from 1.5 to 212 GHz (an upper limit of the flux is also provided at 405 GHz) and X-ray. Although the observations of radio emission up to 212 GHz indicates that relativistic electrons with energies of a few MeV were accelerated, no significant hard X-ray emission was detected by RHESSI above ~ 250 keV. Images at 12--20 and 50--100 keV reveal a very compact, but resolved, source of about ~ 10 x 10. EUV TRACE images show a multi-kernel structure suggesting a complex (multipolar) magnetic topology. During the peak time the radio spectrum shows an extended flatness from ~ 7 to 35 GHz. Modeling the optically thin part of the radio spectrum as gyrosynchrotron emission we obtained the electron spectrum (spectral index delta, instantaneous number of emitting electrons). It is shown that in order to keep the expected X-ray emission from the same emitting electrons below the RHESSI background at 250 keV, a magnetic field above 500 G is necessary. On the other hand, the electron spectrum deduced from radio observations >= 50 GHz is harder than that deduced from ~ 70 - 250 keV X-ray data, meaning that there must exist a breaking energy around a few hundred keV. During the decay of the impulsive phase, a hardening of the X-ray spectrum is observed which is interpreted as a hardening of the electron distribution spectrum produced by the diffusion due to Coulomb collisions of the trapped electrons in a medium with an electron density of n_e ~ 3E10 - 5E10 cm-3.
We present SDO/AIA observations of an eruptive X-class flare of July 12, 2012, and compare its evolution with the predictions of a 3D numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the AIA 131A observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km/s along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flare loops. A DEM analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a CME observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the standard solar flare model in 3D. This model matches the observations well, reproducing both the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.
71 - Ruisheng Zheng , Yao Chen , 2016
With the observations of the Solar Dynamics Observatory, we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and there appeared three FRs. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edge, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection between the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in 3D standard model for eruptive flares. We suggest that complex structures of the flare is likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.
The standard model for eruptive flares has in the past few years been extended to 3D. It predicts typical J-shaped photospheric footprints of the coronal current layer, forming at similar locations as the Quasi-Separatrix Layers (QSLs). Such a morphology is also found for flare ribbons observed in the EUV band, as well as in non-linear force-free field (NLFFF) magnetic field extrapolations and models. We study the evolution of the photospheric traces of the current density and flare ribbons, both obtained with the SDO instruments. We investigate the photospheric current evolution during the 6 September 2011 X-class flare (SOL2011-09-06T22:20) from observational data of the magnetic field obtained with HMI. This evolution is compared with that of the flare ribbons observed in the EUV filters of the AIA. We also compare the observed electric current density and the flare ribbon morphology with that of the QSLs computed from the flux rope insertion method/NLFFF model. The NLFFF model shows the presence of a fan-spine configuration of overlying field lines, due to the presence of a parasitic polarity, embedding an elongated flux rope that appears in the observations as two parts of a filament. The QSLs, evolved via a magnetofrictional method, also show similar morphology and evolution as both the current ribbons and the EUV flare ribbons obtained at several times during the flare. For the first time, we propose a combined analysis of the photospheric traces of an eruptive flare, in a complex topology, with direct measurements of electric currents and QSLs from observational data and a magnetic field model. The results, obtained by two different and independent approaches, 1) confirm previous results of current increase during the impulsive phase of the flare, 2) show how NLFFF models can capture the essential physical signatures of flares even in a complex magnetic field topology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا