No Arabic abstract
Let (G,tau_G) be a topological group. We establish relationships between weakly almost periodic topologies on G coarser than tau_G, central idempotents in the weakly almost periodic compactification G^W, and certain ideals in the algebra of weakly almost periodic functions W(G). We gain decompositions of weakly almost periodic representations, generalizing many from the literature. We look at the role of pre-locally compact topologies, unitarizable topologies, and extend or decompositions to Fourier-Stieltjes algebras B(G).
We determine when contractive idempotents in the measure algebra of a locally compact group commute. We consider a dynamical version of the same result. We also look at some properties of groups of measures whose identity is a contactive idempotent.
Let $A = (a_{j,k})_{j,k=-infty}^infty$ be a bounded linear operator on $l^2(mathbb{Z})$ whose diagonals $D_n(A) = (a_{j,j-n})_{j=-infty}^inftyin l^infty(mathbb{Z})$ are almost periodic sequences. For certain classes of such operators and under certain conditions, we are going to determine the asymptotics of the determinants $det A_{n_1,n_2}$ of the finite sections of the operator $A$ as their size $n_2 - n_1$ tends to infinity. Examples of such operators include block Toeplitz operators and the almost Mathieu operator.
In this paper, we use the variational approach to investigate recurrent properties of solutions for stochastic partial differential equations, which is in contrast to the previous semigroup framework. Consider stochastic differential equations with monotone coefficients. Firstly, we establish the continuous dependence on initial values and coefficients for solutions. Secondly, we prove the existence of recurrent solutions, which include periodic, almost periodic and almost automorphic solutions. Then we show that these recurrent solutions are globally asymptotically stable in square-mean sense. Finally, for illustration of our results we give two applications, i.e. stochastic reaction diffusion equations and stochastic porous media equations.
The paper is dedicated to studying the problem of Poisson stability (in particular stationarity, periodicity, quasi-periodicity, Bohr almost periodicity, Bohr almost automorphy, Birkhoff recurrence, almost recurrence in the sense of Bebutov, Levitan almost periodicity, pseudo-periodicity, pseudo-recurrence, Poisson stability) of solutions for semi-linear stochastic equation $$ dx(t)=(Ax(t)+f(t,x(t)))dt +g(t,x(t))dW(t)quad (*) $$ with exponentially stable linear operator $A$ and Poisson stable in time coefficients $f$ and $g$. We prove that if the functions $f$ and $g$ are appropriately small, then equation $(*)$ admits at least one solution which has the same character of recurrence as the functions $f$ and $g$.
This article - a part of a multipaper project investigating arithmetic mean ideals - investigates the codimension of commutator spaces [I, B(H)] of operator ideals on a separable Hilbert space, i.e., ``How many traces can an ideal support? We conjecture that the codimension can be only zero, one, or infinity. Using the arithmetic mean (am) operations on ideals introduced by Dykema, Figiel, Weiss, and Wodzicki, and the analogous am operations at infinity that we develop in this article, the conjecture is proven for all ideals not contained in the largest am-infinity stable ideal and not containing the smallest am-stable ideal. It is also proven for all soft-edged ideals (i.e., I= IK(H)) and all soft-complemented ideals (i.e., I= I/K(H)), which include many classical operator ideals. In the process, we prove that an ideal of trace class operators supports a unique trace (up to scalar multiples) if and only if it is am-infinity stable and that, for a principal ideal, am-infinity stability is equivalent to regularity at infinity of the sequence of s-numbers of the generator. Furthermore, we apply trace extension methods to two problems on elementary operators studied by V. Shulman and to Fuglede-Putnam type problems of the second author.