No Arabic abstract
The view synthesis problem--generating novel views of a scene from known imagery--has garnered recent attention due in part to compelling applications in virtual and augmented reality. In this paper, we explore an intriguing scenario for view synthesis: extrapolating views from imagery captured by narrow-baseline stereo cameras, including VR cameras and now-widespread dual-lens camera phones. We call this problem stereo magnification, and propose a learning framework that leverages a new layered representation that we call multiplane images (MPIs). Our method also uses a massive new data source for learning view extrapolation: online videos on YouTube. Using data mined from such videos, we train a deep network that predicts an MPI from an input stereo image pair. This inferred MPI can then be used to synthesize a range of novel views of the scene, including views that extrapolate significantly beyond the input baseline. We show that our method compares favorably with several recent view synthesis methods, and demonstrate applications in magnifying narrow-baseline stereo images.
We present a novel framework to learn to convert the perpixel photometric information at each view into spatially distinctive and view-invariant low-level features, which can be plugged into existing multi-view stereo pipeline for enhanced 3D reconstruction. Both the illumination conditions during acquisition and the subsequent per-pixel feature transform can be jointly optimized in a differentiable fashion. Our framework automatically adapts to and makes efficient use of the geometric information available in different forms of input data. High-quality 3D reconstructions of a variety of challenging objects are demonstrated on the data captured with an illumination multiplexing device, as well as a point light. Our results compare favorably with state-of-the-art techniques.
We explore the problem of view synthesis from a narrow baseline pair of images, and focus on generating high-quality view extrapolations with plausible disocclusions. Our method builds upon prior work in predicting a multiplane image (MPI), which represents scene content as a set of RGB$alpha$ planes within a reference view frustum and renders novel views by projecting this content into the target viewpoints. We present a theoretical analysis showing how the range of views that can be rendered from an MPI increases linearly with the MPI disparity sampling frequency, as well as a novel MPI prediction procedure that theoretically enables view extrapolations of up to $4times$ the lateral viewpoint movement allowed by prior work. Our method ameliorates two specific issues that limit the range of views renderable by prior methods: 1) We expand the range of novel views that can be rendered without depth discretization artifacts by using a 3D convolutional network architecture along with a randomized-resolution training procedure to allow our model to predict MPIs with increased disparity sampling frequency. 2) We reduce the repeated texture artifacts seen in disocclusions by enforcing a constraint that the appearance of hidden content at any depth must be drawn from visible content at or behind that depth. Please see our results video at: https://www.youtube.com/watch?v=aJqAaMNL2m4.
Multi-View Stereo (MVS) is a core task in 3D computer vision. With the surge of novel deep learning methods, learned MVS has surpassed the accuracy of classical approaches, but still relies on building a memory intensive dense cost volume. Novel View Synthesis (NVS) is a parallel line of research and has recently seen an increase in popularity with Neural Radiance Field (NeRF) models, which optimize a per scene radiance field. However, NeRF methods do not generalize to novel scenes and are slow to train and test. We propose to bridge the gap between these two methodologies with a novel network that can recover 3D scene geometry as a distance function, together with high-resolution color images. Our method uses only a sparse set of images as input and can generalize well to novel scenes. Additionally, we propose a coarse-to-fine sphere tracing approach in order to significantly increase speed. We show on various datasets that our method reaches comparable accuracy to per-scene optimized methods while being able to generalize and running significantly faster.
We study the problem of novel view synthesis of a scene comprised of 3D objects. We propose a simple yet effective approach that is neither continuous nor implicit, challenging recent trends on view synthesis. We demonstrate that although continuous radiance field representations have gained a lot of attention due to their expressive power, our simple approach obtains comparable or even better novel view reconstruction quality comparing with state-of-the-art baselines while increasing rendering speed by over 400x. Our model is trained in a category-agnostic manner and does not require scene-specific optimization. Therefore, it is able to generalize novel view synthesis to object categories not seen during training. In addition, we show that with our simple formulation, we can use view synthesis as a self-supervision signal for efficient learning of 3D geometry without explicit 3D supervision.
We present a novel approach to view synthesis using multiplane images (MPIs). Building on recent advances in learned gradient descent, our algorithm generates an MPI from a set of sparse camera viewpoints. The resulting method incorporates occlusion reasoning, improving performance on challenging scene features such as object boundaries, lighting reflections, thin structures, and scenes with high depth complexity. We show that our method achieves high-quality, state-of-the-art results on two datasets: the Kalantari light field dataset, and a new camera array dataset, Spaces, which we make publicly available.