We extend Schaumanns theory of pivotal structures on fusion categories matched to a module category and of module traces developed in arXiv:1206.5716 to the case of non-semisimple tensor categories, and use it to study eigenvalues of the squared antipode $S^2$ in weak Hopf algebras. In particular, we diagonalize $S^2$ for semisimple weak Hopf algebras in characteristic zero, generalizing the result of Nikshych in the pseudounitary case. We show that the answer depends only on the Grothendieck group data of the pivotalizations of the categories involved and the global dimension of the fusion category (thus, all eigenvalues belong to the corresponding number field). On the other hand, we study the eigenvalues of $S^2$ on the non-semisimple weak Hopf algebras attached to dynamical quantum groups at roots of $1$ defined by D. Nikshych and the author in arXiv:math/0003221, and show that they depend nontrivially on the continuous parameters of the corresponding module category. We then compute these eigenvalues as rational functions of these parameters. The paper also contains an appendix by G. Schaumann discussing the connection between our generalization of module traces and the notion of an inner product module category introduced in arXiv:1405.5667.