No Arabic abstract
Self-consistent field approach is used to model a single end-tethered polymer chain on a substrate subject to various forces in three dimensions. Starting from a continuous Gaussian chain model, the following perturbations are considered: (i) hydrodynamic interaction with an externally imposed shear flow for which a new theoretical framework is formulated; (ii) excluded volume effect in a good solvent, treated in a mean field approximation; (iii) monomer-substrate repulsion. While the chain stretches along the flow, the change of the density profile perpendicular to the substrate is negligible for any reasonable simulation parameters. This null effect is in agreement with multiple neutron scattering studies.
A coarse grained model for flexible polymers end-grafted to repulsive spherical nanoparticles is studied for various chain lengths and grafting densities under good solvent conditions, by Molecular Dynamics methods and density functional theory. With increasing chain length the monomer density profile exhibits a crossover to the star polymer limit. The distribution of polymer ends and the linear dimensions of individual polymer chains are obtained, while the inhomogeneous stretching of the chains is characterized by the local persistence lengths. The results on the structure factor of both single chain and full spherical brush as well as the range of applicability of the different theoretical tools are presented. Eventually an outlook on experiments is given.
The organization of nano-particles inside grafted polymer layers is governed by the interplay of polymer-induced entropic interactions and the action of externally applied fields. Earlier work had shown that strong external forces can drive the formation of colloidal structures in polymer brushes. Here we show that external fields are not essential to obtain such colloidal patterns: we report Monte Carlo and Molecular dynamics simulations that demonstrate that ordered structures can be achieved by compressing a `sandwich of two grafted polymer layers, or by squeezing a coated nanotube, with nano-particles in between. We show that the pattern formation can be efficiently controlled by the applied pressure, while the characteristic length--scale, i.e. the typical width of the patterns, is sensitive to the length of the polymers. Based on the results of the simulations, we derive an approximate equation of state for nano-sandwiches.
Molecular Dynamics simulations of a coarse-grained bead-spring model of flexible macromolecules tethered with one end to the surface of a cylindrical pore are presented. Chain length $N$ and grafting density $sigma$ are varied over a wide range and the crossover from ``mushroom to ``brush behavior is studied for three pore diameters. The monomer density profile and the distribution of the free chain ends are computed and compared to the corresponding model of polymer brushes at flat substrates. It is found that there exists a regime of $N$ and $sigma$ for large enough pore diameter where the brush height in the pore exceeds the brush height on the flat substrate, while for large enough $N$ and $sigma$ (and small enough pore diameters) the opposite behavior occurs, i.e. the brush is compressed by confinement. These findings are used to discuss the corresponding theories on polymer brushes at concave substrates.
We employ 3D Langevin Dynamics simulations to study the dynamics of polymer chains translocating through a nanopore in presence of asymmetric solvent conditions. Initially a large fraction ($>$ 50%) of the chain is placed at the textit{cis} side in a good solvent while the $trans$ segments are placed in a bad solvent that causes the chain to collapse and promotes translocation from the $cis$ to the $trans$ side. In particular, we study the ratcheting effect of a globule formed at the textit{trans} side created by the translocated segment, and how this ratchet drives the system towards faster translocation. Unlike in the case of unbiased or externally forced translocation where the mean first passage time $langle tau rangle $ is often characterized by algebraic scaling as a function of the chain length $N$ with a single scaling exponent $alpha$, and the histogram of the mean first passage time $P(tau/langletau rangle)$ exhibits scaling, we find that scaling is not well obeyed. For relatively long chains we find $langle tau rangle sim N^alpha$ where $alpha approx 1$ for $varepsilon/k_{B}T > 1$. In this limit, we also find that translocation proceeds with a nearly constant velocity of the individual beads(monomers), which is attributed to the coiling of the globule. We provide an approximate theory assuming rotat ional motion restricted on a 2D disc to demonstrate that there is a crossover from diffusive behavior of the center of mass for short chains to a single file translocation for long chains, where the average translocation time scales linearly with the chain length $N$.
A comparative simulation study of polymer brushes formed by grafting at a planar surface either flexible linear polymers (chain length $N_L$) or (non-catenated) ring polymers (chain length $N_R=2 N_L$) is presented. Two distinct off-lattice models are studied, one by Monte Carlo methods, the other by Molecular Dynamics, using a fast implementation on graphics processing units (GPUs). It is shown that the monomer density profiles $rho(z)$ in the $z$-direction perpendicular to the surface for rings and linear chains are practically identical, $rho_R(2 N_L, z)=rho_L(N_L, z)$. The same applies to the pressure, exerted on a piston at hight z, as well. While the gyration radii components of rings and chains in $z$-direction coincide, too, and increase linearly with $N_L$, the transverse components differ, even with respect to their scaling properties: $R_{gxy}^{(L)} propto N_L^{1/2}$, $R_{gxy}^{(R)} propto N_L^{0.4}$. These properties are interpreted in terms of the statistical properties known for ring polymers in dense melts.