Do you want to publish a course? Click here

Stellar mass dependence of the 21-cm signal around the first star and its impact on the global signal

337   0   0.0 ( 0 )
 Added by Toshiyuki Tanaka
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The 21-cm signal in the vicinity of the first stars is expected to reflect properties of the first stars. In this study we pay special attention to tracing the time evolution of the ionizing photons escape fraction, which affects the distribution of neutral hydrogen, by performing radiation hydrodynamics (RHD) simulations resolving dense gas in a halo. We find that the radial profile of 21-cm differential brightness temperature is quite sensitive to the stellar and halo masses, which reflects the time evolution of the escape fraction. In the case of a less massive star, ionizing photons hardly escape from its host halo due to the absorption by dense halo gas, thus an deep 21-cm absorption feature at just outside the halo lasts a long time. Whereas photons from a massive star well working to heat the ambient intergalactic medium turn out to cause a spatially extended 21-cm emission signature. Although individual signals are found to be undetectable with the Square Kilometre Array, our analysis using the results from the RHD simulations indicates that the properties of the first stars are imprinted on the 21-cm global signal: its amplitude depends not only on the cosmic star formation rate density, but also on the typical mass of the first stars due to the stellar-mass-dependent heating rate. Thus, we suggest that the initial mass function of the first stars is an essential factor in understanding the global signal.



rate research

Read More

The sky-averaged, or global, background of redshifted $21$ cm radiation is expected to be a rich source of information on cosmological reheating and reionizaton. However, measuring the signal is technically challenging: one must extract a small, frequency-dependent signal from under much brighter spectrally smooth foregrounds. Traditional approaches to study the global signal have used single antennas, which require one to calibrate out the frequency-dependent structure in the overall system gain (due to internal reflections, for example) as well as remove the noise bias from auto-correlating a single amplifier output. This has motivated proposals to measure the signal using cross-correlations in interferometric setups, where additional calibration techniques are available. In this paper we focus on the general principles driving the sensitivity of the interferometric setups to the global signal. We prove that this sensitivity is directly related to two characteristics of the setup: the cross-talk between readout channels (i.e. the signal picked up at one antenna when the other one is driven) and the correlated noise due to thermal fluctuations of lossy elements (e.g. absorbers or the ground) radiating into both channels. Thus in an interferometric setup, one cannot suppress cross-talk and correlated thermal noise without reducing sensitivity to the global signal by the same factor -- instead, the challenge is to characterize these effects and their frequency dependence. We illustrate our general theorem by explicit calculations within toy setups consisting of two short dipole antennas in free space and above a perfectly reflecting ground surface, as well as two well-separated identical lossless antennas arranged to achieve zero cross-talk.
The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources, and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming halos; the efficiency, spectral energy distribution, and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range $z = 6-40$ for each of 193 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide selection of models we still find clear correlations between the key features of the global 21-cm signal and underlying astrophysical properties of the high redshift Universe, namely the Ly$alpha$ intensity, the X-ray heating rate, and the production rate of ionizing photons. These correlations can be used to directly link future measurements of the global 21-cm signal to astrophysical quantities in a mostly model-independent way. We identify additional correlations that can be used as consistency checks.
The 21-cm signal of neutral hydrogen is a sensitive probe of the Epoch of Reionization (EoR) and Cosmic Dawn. Currently operating radio telescopes have ushered in a data-driven era of 21-cm cosmology, providing the first constraints on the astrophysical properties of sources that drive this signal. However, extracting astrophysical information from the data is highly non-trivial and requires the rapid generation of theoretical templates over a wide range of astrophysical parameters. To this end emulators are often employed, with previous efforts focused on predicting the power spectrum. In this work we introduce 21cmGEM - the first emulator of the global 21-cm signal from Cosmic Dawn and the EoR. The smoothness of the output signal is guaranteed by design. We train neural networks to predict the cosmological signal using a database of ~30,000 simulated signals which were created by varying seven astrophysical parameters: the star formation efficiency and the minimal mass of star-forming halos; the efficiency of the first X-ray sources and their spectrum parameterized by spectral index and the low energy cutoff; the mean free path of ionizing photons and the CMB optical depth. We test the performance with a set of ~2,000 simulated signals, showing that the relative error in the prediction has an r.m.s. of 0.0159. The algorithm is efficient, with a running time per parameter set of 0.16 sec. Finally, we use the database of models to check the robustness of relations between the features of the global signal and the astrophysical parameters that we previously reported.
The properties of the first galaxies, expected to drive the Cosmic Dawn (CD) and the Epoch of Reionization (EoR), are encoded in the 3D structure of the cosmic 21-cm signal. Parameter inference from upcoming 21-cm observations promises to revolutionize our understanding of these unseen galaxies. However, prior inference was done using models with several simplifying assumptions. Here we introduce a flexible, physically-motivated parametrization for high-$z$ galaxy properties, implementing it in the public code 21cmFAST. In particular, we allow their star formation rates and ionizing escape fraction to scale with the masses of their host dark matter halos, and directly compute inhomogeneous, sub-grid recombinations in the intergalactic medium. Combining current Hubble observations of the rest-frame UV luminosity function (UV LFs) at high-$z$ with a mock 1000h 21-cm observation using the Hydrogen Epoch of Reionization Arrays (HERA), we constrain the parameters of our model using a Monte Carlo Markov Chain sampler of 3D simulations, 21CMMC. We show that the amplitude and scaling of the stellar mass with halo mass is strongly constrained by LF observations, while the remaining galaxy properties are constrained mainly by 21-cm observations. The two data sets compliment each other quite well, mitigating degeneracies intrinsic to each observation. All eight of our astrophysical parameters are able to be constrained at the level of $sim 10%$ or better. The updat
81 - Avery Meiksin 2020
Allowing for enhanced Ly$alpha$ photon line emission from Population III dominated stellar systems in the first forming galaxies, we show the 21-cm cosmic dawn signal at $10<z<30$ may substantially differ from standard scenarios. Energy transfer by Ly$alpha$ photons emerging from galaxies may heat intergalactic gas if HII regions within galaxies are recombination bound, or cool the gas faster than by adiabatic expansion if reddened by winds internal to the haloes. In some cases, differential 21-cm antenna temperatures near $-500$ mK may be achieved at $15<z<25$, similar to the signature detected by the EDGES 21-cm cosmic dawn experiment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا