No Arabic abstract
We report the first measurements of the $E$ beam-target helicity asymmetry for the $vec{gamma} vec{n} to K^{0}Lambda$, and $K^{0}Sigma^{0}$ channels in the energy range 1.70$leq Wleq$2.34 GeV. The CLAS system at Jefferson Lab uses a circularly polarized photon beam and a target consisting of longitudinally polarized solid molecular hydrogen deuteride with low background contamination for the measurements. The multivariate analysis method boosted decision trees was used to isolate the reactions of interest. Comparisons with predictions from the KaonMAID, SAID, and Bonn-Gatchina models are presented. These results will help separate the isospin $I=0$ and $I=1$ photo-coupling transition amplitudes in pseudoscalar meson photoproduction.
Measurements of $gamma p rightarrow K^{+} Lambda$ and $gamma p rightarrow K^{+} Sigma^0$ cross-sections have been obtained with the photon tagging facility and the Crystal Ball calorimeter at MAMI-C. The measurement uses a novel $K^+$ meson identification technique in which the weak decay products are characterized using the energy and timing characteristics of the energy deposit in the calorimeter, a method that has the potential to be applied at many other facilities. The fine center-of-mass energy ($W$) resolution and statistical accuracy of the new data results in a significant impact on partial wave analyses aiming to better establish the excitation spectrum of the nucleon. The new analyses disfavor a strong role for quark-diquark dynamics in the nucleon.
The double-polarization observable $E$ was studied for the reaction $gamma pto pomega$ using the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B at the Thomas Jefferson National Accelerator Facility and the longitudinally-polarized frozen-spin target (FROST). The observable was measured from the charged decay mode of the meson, $omegatopi^+pi^-pi^0$, using a circularly-polarized tagged-photon beam with energies ranging from the $omega$ threshold at 1.1 to 2.3 GeV. A partial-wave analysis within the Bonn-Gatchina framework found dominant contributions from the $3/2^+$ partial wave near threshold, which is identified with the sub-threshold $N(1720),3/2^+$ nucleon resonance. To describe the entire data set, which consisted of $omega$ differential cross sections and a large variety of polarization observables, further contributions from other nucleon resonances were found to be necessary. With respect to non-resonant mechanisms, $pi$ exchange in the $t$-channel was found to remain small across the analyzed energy range, while pomeron $t$-channel exchange gradually grew from the reaction threshold to dominate all other contributions above $W approx 2$ GeV.
Differential cross sections and hyperon polarizations have been measured for $bar{K}^0 n$, $pi^0 Lambda$, and $pi^0 Sigma^0$ production in $K^- p$ interactions at eight $K^-$ momenta between 514 and 750 MeV/$c$. The experiment detected the multiphoton final states with the Crystal Ball spectrometer using a $K^-$ beam from the Alternating Gradient Synchrotron of BNL. The results provide significantly greater precision than the existing data, allowing a detailed reexamination of the excited hyperon states in our energy range.
The beam-helicity asymmetry was measured, for the first time, in photoproduction of $pi^{0}eta$ pairs on carbon, aluminum, and lead, with the A2 experimental setup at MAMI. The results are compared to an earlier measurement on a free proton and to the corresponding theoretical calculations. The Mainz model is used to predict the beam-helicity asymmetry for the nuclear targets. The present results indicate that the photoproduction mechanism for $pi^{0}eta$ pairs on nuclei is similar to photoproduction on a free nucleon. This process is dominated by the $D_{33}$ partial wave with the $etaDelta(1232)$ intermediate state.
The cross sections for the reactions pp -> p Lambda^0K^+ and pn -> n Lambda^0K^+ are calculated near threshold of the final states. The theoretical ratio of the cross sections R = sigma(pn -> n Lambda^0K^+)/ sigma(pp ->pLambda^0K^+) = 3 shows the enhancement of the pn interaction with respect to the pp interaction near threshold of the strangeness production N Lambda^0K^+. Such an enhancement is caused by the contribution of the np interaction in the isospin-singlet state, which is stronger than the $pn$ interaction in the isospin-triplet state. For the confirmation of this result we calculate the cross sections for the reactions pp -> pp pi^0, pi^0 p -> Lambda^0 K^+ and pi^-p -> Lambda^0 K^0 near threshold of the final states. The theoretical cross sections agree well with the experimental data.