Quantum Process Fidelity Bounds from Sets of Input States


Abstract in English

We investigate the problem of bounding the quantum process fidelity given bounds on the fidelities between target states and the action of a process on a set of pure input states. We formulate the problem as a semidefinite program and prove convexity of the minimum process fidelity as a function of the errors on the output states. We characterize the conditions required to uniquely determine a process in the case of no errors, and derive a lower bound on its fidelity in the limit of small errors for any set of input states satisfying these conditions. We then consider sets of input states whose one-dimensional projectors form a symmetric positive operator-valued measure (POVM). We prove that for such sets the minimum fidelity is bounded by a linear function of the average output state error. The minimal non-orthogonal symmetric POVM contains $d+1$ states, where $d$ is the Hilbert space dimension. Our bounds applied to these states provide an efficient method for estimating the process fidelity without the use of full process tomography.

Download