Do you want to publish a course? Click here

Quantum Process Fidelity Bounds from Sets of Input States

189   0   0.0 ( 0 )
 Added by Karl Mayer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the problem of bounding the quantum process fidelity given bounds on the fidelities between target states and the action of a process on a set of pure input states. We formulate the problem as a semidefinite program and prove convexity of the minimum process fidelity as a function of the errors on the output states. We characterize the conditions required to uniquely determine a process in the case of no errors, and derive a lower bound on its fidelity in the limit of small errors for any set of input states satisfying these conditions. We then consider sets of input states whose one-dimensional projectors form a symmetric positive operator-valued measure (POVM). We prove that for such sets the minimum fidelity is bounded by a linear function of the average output state error. The minimal non-orthogonal symmetric POVM contains $d+1$ states, where $d$ is the Hilbert space dimension. Our bounds applied to these states provide an efficient method for estimating the process fidelity without the use of full process tomography.



rate research

Read More

We derive several bounds on fidelity between quantum states. In particular we show that fidelity is bounded from above by a simple to compute quantity we call super--fidelity. It is analogous to another quantity called sub--fidelity. For any two states of a two--dimensional quantum system (N=2) all three quantities coincide. We demonstrate that sub-- and super--fidelity are concave functions. We also show that super--fidelity is super--multiplicative while sub--fidelity is sub--multiplicative and design feasible schemes to measure these quantities in an experiment. Super--fidelity can be used to define a distance between quantum states. With respect to this metric the set of quantum states forms a part of a $N^2-1$ dimensional hypersphere.
We present a detailed error analysis of a Rydberg blockade mediated controlled-NOT quantum gate between two neutral atoms as demonstrated recently in Phys. Rev. Lett. 104, 010503 (2010) and Phys. Rev. A 82, 030306 (2010). Numerical solutions of a master equation for the gate dynamics, including all known sources of technical error, are shown to be in good agreement with experiments. The primary sources of gate error are identified and suggestions given for future improvements. We also present numerical simulations of quantum process tomography to find the intrinsic fidelity, neglecting technical errors, of a Rydberg blockade controlled phase gate. The gate fidelity is characterized using trace overlap and trace distance measures. We show that the trace distance is linearly sensitive to errors arising from the finite Rydberg blockade shift and introduce a modified pulse sequence which corrects the linear errors. Our analysis shows that the intrinsic gate error extracted from simulated quantum process tomography can be under 0.002 for specific states of $^{87}$Rb or Cs atoms. The relation between the process fidelity and the gate error probability used in calculations of fault tolerance thresholds is discussed.
The bounds of concurrence in [F. Mintert and A. Buchleitner, Phys. Rev. Lett. 98 (2007) 140505] and [C. Zhang textit{et. al.}, Phys. Rev. A 78 (2008) 042308] are proved by using two properties of the fidelity. In two-qubit systems, for a given value of concurrence, the states achieving the maximal upper bound, the minimal lower bound or the maximal difference upper-lower bound are determined analytically.
We formulate an algorithm to lower bound the fidelity between quantum many-body states only from partial information, such as the one accessible by few-body observables. Our method is especially tailored to permutationally invariant states, but it gives nontrivial results in all situations where this symmetry is even partial. This property makes it particularly useful for experiments with atomic ensembles, where relevant many-body states can be certified from collective measurements. As an example, we show that a $xi^2approx-6;text{dB}$ spin squeezed state of $N=100$ particles can be certified with a fidelity up to $F=0.999$, only from the measurement of its polarization and of its squeezed quadrature. Moreover, we show how to quantitatively account for both measurement noise and partial symmetry in the states, which makes our method useful in realistic experimental situations.
We propose an alternative fidelity measure (namely, a measure of the degree of similarity) between quantum states and benchmark it against a number of properties of the standard Uhlmann-Jozsa fidelity. This measure is a simple function of the linear entropy and the Hilbert-Schmidt inner product between the given states and is thus, in comparison, not as computationally demanding. It also features several remarkable properties such as being jointly concave and satisfying all of Jozsas axioms. The trade-off, however, is that it is supermultiplicative and does not behave monotonically under quantum operations. In addition, new metrics for the space of density matrices are identified and the joint concavity of the Uhlmann-Jozsa fidelity for qubit states is established.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا