Do you want to publish a course? Click here

Piezoelectric scattering of optical polaron in halide perovskites

106   0   0.0 ( 0 )
 Added by Minghui Zhang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

For the intrinsic carriers of MAPbBr$_{3}$, the temperature $T$ dependent mobility $mu(T)$ of behaves like $mupropto T^{-1/2}$ in piezoelectric tetragonal phase, $mupropto T^{-1.4}$ in non-piezoelectric cubic phase. But for the photo-generated carriers in other halide perovskites ABX$_{3}$, $mupropto T^{-3/2}$ behavior is typical. Due to the strong interaction of carrier with longitudinal optical phonon, in ABX$_{3}$ the carriers mainly exist as optical polarons. The softness of ABX$_{3}$ renders it without inversion center in tetragonal phase, which allows piezoelectric effect at low carrier concentration. The variations of $mu(T)$ behavior results from (1) the wave vector dependence of the piezoelectric interaction of polarons with acoustic phonons is different from that of ordinary polaron-acoustic phonon interaction; (2) the residual interaction of polaron with 2 longitudinal optical phonons can be ignored at low temperature, but is important at higher temperature; and (3) the concentration of intrinsic carriers is determined by temperature, while the concentration of photo-generated carriers is determined by the incident flux of photons.



rate research

Read More

344 - Jarvist Moore Frost 2017
Lead halide perovskite semiconductors are soft, polar, materials. The strong driving force for polaron formation (the dielectric electron-phonon coupling) is balanced by the light band effective-masses, leading to a strongly-interacting large-polaron. A first-principles prediction of mobility would help understand the fundamental mobility limits. Theories of mobility need to consider the polaron (rather than free-carrier) state due to the strong interactions. In this material we expect that at room temperature polar-optical phonon mode scattering will dominate, and so limit mobility. We calculate the temperature-dependent polaron mobility of hybrid halide perovskites by variationally solving the Feynman polaron model with the finite-temperature free-energies of =Osaka. This model considers a simplified effective-mass band-structure interacting with a continuum dielectric of characteristic response frequency. We parametrise the model fully from electronic-structure calculations. In methylammonium lead iodide at 300 K we predict electron and hole mobilities of 133 and 94 cm^2/V/s respectively. These are in acceptable agreement with single-crystal measurements, suggesting that the intrinsic limit of the polaron charge carrier state has been reached. Repercussions for hot-electron photo-excited states are discussed. As well as mobility, the model also exposes the dynamic structure of the polaron. This can be used to interpret impedance measurements of the charge-carrier state. We provide the phonon-drag mass-renormalisation, and scattering time constants. These could be used as parameters for larger-scale device models and band-structure dependent mobility simulations.
The behavior of hot carriers in metal-halide perovskites (MHPs) present a valuable foundation for understanding the details of carrier-phonon coupling in the materials as well as the prospective development of highly efficient hot carrier and carrier multiplication solar cells. Whilst the carrier population dynamics during cooling have been intensely studied, the evolution of the hot carrier properties, namely the hot carrier mobility, remain largely unexplored. To address this, we introduce a novel ultrafast visible pump - infrared push - terahertz probe spectroscopy (PPP-THz) to monitor the real-time conductivity dynamics of cooling carriers in methylammonium lead iodide. We find a decrease in mobility upon optically depositing energy into the carriers, which is typical of band-transport. Surprisingly, the conductivity recovery dynamics are incommensurate with the intraband relaxation measured by an analogous experiment with an infrared probe (PPP- IR), and exhibit a negligible dependence on the density of hot carriers. These results and the kinetic modelling reveal the importance of highly-localized lattice heating on the mobility of the hot electronic states. This collective polaron-lattice phenomenon may contribute to the unusual photophysics observed in MHPs and should be accounted for in devices that utilize hot carriers.
70 - T. A. Tyson , W. Gao , Y.-S. Chen 2017
Solar cells based on hybrid perovskites have shown high efficiency while possessing simple processing methods. To gain a fundamental understanding of their properties on an atomic level, we investigate single crystals of CH3NH3PbI3 with a narrow transition (~5 K) near 327 K. Temperature dependent structural measurements reveal a persistent tetragonal structure with smooth changes in the atomic displacement parameters (ADPs) on crossing T*. We show that the ADPs for I ions yield extended flat regions in the potential wells consistent with the measured large thermal expansion parameter. Molecular dynamics simulations reveal that this material exhibits significant high asymmetries in the Pb-I pair distribution functions. We also show that the intrinsically enhanced freedom of motion of the iodine atoms enables large deformations. This flexibility (softness) of the atomic structure results in highly localized atomic relaxation about defects and hence accounts for both the high carrier mobility as well as the structural instability.
Hybrid halide perovskite semiconductors exhibit complex, dynamical disorder while also harboring properties ideal for optoelectronic applications that include photovoltaics. However, these materials are structurally and compositionally distinct from traditional compound semiconductors composed of tetrahedrally-coordinated elements with an average valence electron count of silicon. As discussed here, the additional dynamic degrees of freedom of hybrid halide perovskites underlie many of their potentially transformative physical properties. Neutron scattering and spectroscopy studies of the atomic dynamics of these materials have yielded significant insights to the functional properties. Specifically, inelastic neutron scattering has been used to elucidate the phonon band structure, and quasi-elastic neutron scattering (QENS) has revealed the nature of the uncorrelated dynamics pertaining to molecular reorientations. Understanding the dynamics of these complex semiconductors has elucidated the temperature-dependent phase stability and origins of the defect-tolerant electronic transport from the highly polarizable dielectric response. Furthermore, the dynamic degrees of freedom of the hybrid perovskites provides additional opportunities for application engineering and innovation.
The formation of polarons due to the interaction between charge carriers and the crystal lattice has been proposed to have wide-ranging effects on charge carrier dynamics in lead--halide perovskites (LHPs). The hypothesis underlying many of those proposals is that charge carriers are protected from scattering by their incorporation into polarons. We test that hypothesis by deriving expressions for the rates of scattering of polarons by polar-optical and acoustic phonons, and ionised impurities, which we compute for electrons in the LHPs MAPbI$_{3}$ , MAPbBr$_{3}$ and CsPbI$_{3}$. We then use the ensemble Monte Carlo method to compute electron-polaron distribution functions which satisfy a Boltzmann equation incorporating the same three scattering mechanisms. By carrying out analogous calculations for band electrons and comparing their results to those for polarons, we conclude that polaron formation impacts charge-carrier scattering rates and mobilities to a limited degree in LHPs, contrary to claims in the recent literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا