Cs$^{+}$ Solvated in Hydrogen - Evidence for Several Distinct Solvation Shells


Abstract in English

Helium nanodroplets are doped with cesium and molecular hydrogen and subsequently ionized by electrons. Mass spectra reveal H$_x$Cs$^{+}$ ions that contain as many as 130 hydrogen atoms. Two features in the spectra are striking: First, the abundance of ions with an odd number of hydrogen atoms is very low; the abundance of HCs$^+$ is only 1 % that of H$_2$Cs$^+$. The dominance of even-numbered species is in stark contrast to previous studies of pure or doped hydrogen cluster ions. Second, the abundance of (H$_2$)$_n$Cs$^+$ features anomalies at n = 8, 12, 32, 44, and 52. Guided by previous work on ions solvated in hydrogen and helium we assign the anomalies at n = 12, 32, 44 to the formation of three concentric, solid-like solvation shells of icosahedral symmetry around Cs$^+$. Preliminary density functional theory calculations for n $le$ 14 are reported as well.

Download