Do you want to publish a course? Click here

Higgs-Axion interplay and anomalous magnetic phase diagram in TlCuCl$_3$

93   0   0.0 ( 0 )
 Added by Gaurav Gupta
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

What is so unique in TlCuCl3 which drives so many unique magnetic features in this compound? To study these properties, here we employ a combination of ab-initio band structure, tight-binding model, and an effective quantum field theory. Within a density-functional theory (DFT) calculation, we find an unexpected bulk Dirac cone without spin-orbit coupling (SOC). Tracing back to its origin, we identify, for the first time, the presence of a Su-Schrieffer-Heeger (SSH) like dimerized Cu chain lying in the 3D crystal structure. The SSH chain, combined with SOC, stipulates an anisotropic 3D Dirac cone where chiral and helical states are intertwined. As a Heisenberg interaction is introduced, we show that the dimerized Cu sublattices of the SSH chain condensate into spin-singlet, dimerized magnets. In the magnetic ground state, we also find a topological phase, distinguished by the axion angle. Finally, to study how the topological axion term couples to magnetic excitations, we derive a Chern-Simons-Ginzburg-Landau action from the 3D SSH Hamiltonian. We find that axion term provides an additional mass term to the Higgs mode, and a lifetime to paramagnons, which are independent of the quantum critical physics. The axion-Higgs interplay can be probed with electric and magnetic field applied parallel or anti-parallel to each other.



rate research

Read More

83 - F. Qian , H. Wilhelm , A. Aqeel 2016
We present an investigation of the magnetic field-temperature phase diagram of Cu$_2$OSeO$_3$ based on DC magnetisation and AC susceptibility measurements covering a broad frequency range of four orders of magnitude, from very low frequencies reaching 0.1 Hz up to 1 kHz. The experiments were performed in the vicinity of $T_C=58.2$ K and around the skyrmion lattice A-phase. At the borders between the different phases the characteristic relaxation times reach several milliseconds and the relaxation is non-exponential. Consequently the borders between the different phases depend on the specific criteria and frequency used and an unambiguous determination is not possible.
107 - M. Hoffmann , K. Dey , J. Werner 2021
High-quality single crystals of CoTiO$_3$ are grown and used to elucidate in detail structural and magnetostructural effects by means of high-resolution capacitance dilatometry studies in fields up to 15 T which are complemented by specific heat and magnetization measurements. In addition, we refine the single-crystal structure of the ilmenite ($Rbar{3}$) phase. At the antiferromagnetic ordering temperature $T_mathrm{N}$, pronounced $lambda$-shaped anomaly in the thermal expansion coefficients signals shrinking of both the $c$ and $b$ axes, indicating strong magnetoelastic coupling with uniaxial pressure along $c$ yielding six times larger effect on $T_mathrm{N}$ than the pressure applied in-plane. The hydrostatic pressure dependency derived by means of Gruneisen analysis amounts to $partial T_mathrm{N}/ partial papprox 2.7(4)$~K/GPa. The high-field magnetization studies in static and pulsed magnetic fields up to 60~T along with high-field thermal expansion measurements facilitate in constructing the complete anisotropic magnetic phase diagram of CoTiO$_3$. While the results confirm the presence of significant magnetodielectric coupling, our data show that magnetism drives the observed structural, dielectric, and magnetic changes both in the short-range ordered regime well-above $T_mathrm{N}$ as well as in the long-range magnetically ordered phase.
We report the magnetic properties of two Eu based compounds, single crystalline EuIrGe$_3$ and EuRhGe$_3$, inferred from magnetisation, electrical transport, heat capacity and $^{151}$Eu M{o}ssbauer spectroscopy. These previously known compounds crystallise in the non-centrosymmetric, tetragonal, $I4mm$, BaNiSn$_3$-type structure. Single crystals of EuIrGe$_3$ and EuRhGe$_3$ were grown using high temperature solution growth method using In as flux. EuIrGe$_3$ exhibits two magnetic orderings at $T_{rm N1}$ = 12.4 K, and $T_{rm N2}$ = 7.3 K. On the other hand EuRhGe$_3$ presents a single magnetic transition with a $T_{rm N}$ = 12 K. $^{151}$Eu M{o}ssbauer spectra present evidence for a cascade of transitions from paramagnetic to incommensurate amplitude modulated followed by an equal moment antiferromagnetic phase at lower temperatures in EuIrGe$_3$, the transitions having a substantial first order character. On the other hand the $^{151}$Eu M{o}ssbauer spectra at 4.2 and 9 K in EuRhGe$_3$ present evidence of a single magnetic transition. In both compounds a superzone gap is observed for the current density $Jparallel$ [001], which enhances with transverse magnetic field. The magnetisation measured up to 14 T shows the occurrence of field induced transitions, which are well documented in the magnetotransport data as well. The magnetic phase diagram constructed from these data is complex, revealing the presence of many phases in the $H-T$ phase space.
We have performed Raman scattering investigations on the high energy magnetic excitations in a BiFeO$_3$ single crystal as a function of both temperature and laser excitation energy. A strong feature observed at 1250 cm$^{-1}$ in the Raman spectra has been previously assigned to two phonon overtone. We show here that its unusual frequency shift with the excitation energy and its asymmetric temperature dependent Fano lineshape reveal a strong coupling to magnetic excitations. In the same energy range, we have also identified the two-magnon excitation with a temperature dependence very similar to $alpha$-Fe$_2$O$_3$ hematite.
We present high-resolution measurements of the thermal expansion and the magnetostriction of TlCuCl$_{3}$ which shows field-induced antiferromagnetic order. We find pronounced anomalies in the field and temperature dependence of different directions of the lattice signaling a large magnetoelastic coupling. The phase boundary is extremely sensitive to pressure, e.g. the transition field would change by about +/- 185$%/GPa under uniaxial pressure applied along certain directions. This drastic effect can unambiguously be traced back to changes of the intradimer coupling under uniaxial pressure. The interdimer couplings remain essentially unchanged under pressure, but strongly change when Tl is replaced by K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا