Do you want to publish a course? Click here

Adversarial Semantic Alignment for Improved Image Captions

67   0   0.0 ( 0 )
 Added by Igor Melnyk
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper we study image captioning as a conditional GAN training, proposing both a context-aware LSTM captioner and co-attentive discriminator, which enforces semantic alignment between images and captions. We empirically focus on the viability of two training methods: Self-critical Sequence Training (SCST) and Gumbel Straight-Through (ST) and demonstrate that SCST shows more stable gradient behavior and improved results over Gumbel ST, even without accessing discriminator gradients directly. We also address the problem of automatic evaluation for captioning models and introduce a new semantic score, and show its correlation to human judgement. As an evaluation paradigm, we argue that an important criterion for a captioner is the ability to generalize to compositions of objects that do not usually co-occur together. To this end, we introduce a small captioned Out of Context (OOC) test set. The OOC set, combined with our semantic score, are the proposed new diagnosis tools for the captioning community. When evaluated on OOC and MS-COCO benchmarks, we show that SCST-based training has a strong performance in both semantic score and human evaluation, promising to be a valuable new approach for efficient discrete GAN training.



rate research

Read More

The hubness problem widely exists in high-dimensional embedding space and is a fundamental source of error for cross-modal matching tasks. In this work, we study the emergence of hubs in Visual Semantic Embeddings (VSE) with application to text-image matching. We analyze the pros and cons of two widely adopted optimization objectives for training VSE and propose a novel hubness-aware loss function (HAL) that addresses previous methods defects. Unlike (Faghri et al.2018) which simply takes the hardest sample within a mini-batch, HAL takes all samples into account, using both local and global statistics to scale up the weights of hubs. We experiment our method with various configurations of model architectures and datasets. The method exhibits exceptionally good robustness and brings consistent improvement on the task of text-image matching across all settings. Specifically, under the same model architectures as (Faghri et al. 2018) and (Lee at al. 2018), by switching only the learning objective, we report a maximum R@1improvement of 7.4% on MS-COCO and 8.3% on Flickr30k.
While most image captioning aims to generate objective descriptions of images, the last few years have seen work on generating visually grounded image captions which have a specific style (e.g., incorporating positive or negative sentiment). However, because the stylistic component is typically the last part of training, current models usually pay more attention to the style at the expense of accurate content description. In addition, there is a lack of variability in terms of the stylistic aspects. To address these issues, we propose an image captioning model called ATTEND-GAN which has two core components: first, an attention-based caption generator to strongly correlate different parts of an image with different parts of a caption; and second, an adversarial training mechanism to assist the caption generator to add diverse stylistic components to the generated captions. Because of these components, ATTEND-GAN can generate correlated captions as well as more human-like variability of stylistic patterns. Our system outperforms the state-of-the-art as well as a collection of our baseline models. A linguistic analysis of the generated captions demonstrates that captions generated using ATTEND-GAN have a wider range of stylistic adjectives and adjective-noun pairs.
An estimated half of the worlds languages do not have a written form, making it impossible for these languages to benefit from any existing text-based technologies. In this paper, a speech-to-image generation (S2IG) framework is proposed which translates speech descriptions to photo-realistic images without using any text information, thus allowing unwritten languages to potentially benefit from this technology. The proposed S2IG framework, named S2IGAN, consists of a speech embedding network (SEN) and a relation-supervised densely-stacked generative model (RDG). SEN learns the speech embedding with the supervision of the corresponding visual information. Conditioned on the speech embedding produced by SEN, the proposed RDG synthesizes images that are semantically consistent with the corresponding speech descriptions. Extensive experiments on two public benchmark datasets CUB and Oxford-102 demonstrate the effectiveness of the proposed S2IGAN on synthesizing high-quality and semantically-consistent images from the speech signal, yielding a good performance and a solid baseline for the S2IG task.
Text-to-Image translation has been an active area of research in the recent past. The ability for a network to learn the meaning of a sentence and generate an accurate image that depicts the sentence shows ability of the model to think more like humans. Popular methods on text to image translation make use of Generative Adversarial Networks (GANs) to generate high quality images based on text input, but the generated images dont always reflect the meaning of the sentence given to the model as input. We address this issue by using a captioning network to caption on generated images and exploit the distance between ground truth captions and generated captions to improve the network further. We show extensive comparisons between our method and existing methods.
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا