Do you want to publish a course? Click here

An optimized KE-tableau-based system for reasoning in the description logic $shdlssx$ (Extended Version)

115   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We present a ke-based procedure for the main TBox and ABox reasoning tasks for the description logic $dlssx$, in short $shdlssx$. The logic $shdlssx$, representable in the decidable multi-sorted quantified set-theoretic fragment $flqsr$, combines the high scalability and efficiency of rule languages such as the Semantic Web Rule Language (SWRL) with the expressivity of description logics. %In fact it supports, among other features, Boolean operations on concepts and roles, role constructs such as the product of concepts and role chains on the left hand side of inclusion axioms, and role properties such as transitivity, symmetry, reflexivity, and irreflexivity. Our algorithm is based on a variant of the kespace system for sets of universally quantified clauses, where the KE-elimination rule is generalized in such a way as to incorporate the $gamma$-rule. The novel system, called keg, turns out to be an improvement of the system introduced in cite{RR2017} and of standard first-order ke x cite{dagostino94}. Suitable benchmark test sets executed on C++ implementations of the three mentioned systems show that the performances of the keg-based reasoner are often up to about 400% better than the ones of the other two systems. This a first step towards the construction of efficient reasoners for expressive OWL ontologies based on fragments of computable set-theory.



rate research

Read More

We present a ke-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic $dlssx$ ($shdlssx$, for short). Our application solves the main TBox and ABox reasoning problems for $shdlssx$. In particular, it solves the consistency problem for $shdlssx$-knowledge bases represented in set-theoretic terms, and a generalization of the emph{Conjunctive Query Answering} problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and optimizes a previous prototype for the consistency checking of $shdlssx$-knowledge bases (see cite{cilc17}), is implemented in textsf{C++}. It supports $shdlssx$-knowledge bases serialized in the OWL/XML format, and it admits also rules expressed in SWRL (Semantic Web Rule Language).
The Shapes Constraint Language (SHACL) allows for formalizing constraints over RDF data graphs. A shape groups a set of constraints that may be fulfilled by nodes in the RDF graph. We investigate the problem of containment between SHACL shapes. One shape is contained in a second shape if every graph node meeting the constraints of the first shape also meets the constraints of the second. To decide shape containment, we map SHACL shape graphs into description logic axioms such that shape containment can be answered by description logic reasoning. We identify several, increasingly tight syntactic restrictions of SHACL for which this approach becomes sound and complete.
We investigate the complexity consequences of adding pointer arithmetic to separation logic. Specifically, we study extensions of the points-to fragment of symbolic-heap separation logic with various forms of Presburger arithmetic constraints. Most significantly, we find that, even in the minimal case when we allow only conjunctions of simple difference constraints (xleq x+k) where k is an integer, polynomial-time decidability is already impossible: satisfiability becomes NP-complete, while quantifier-free entailment becomes coNP-complete and quantified entailment becomes P2-complete (P2 is the second class in the polynomial-time hierarchy) In fact we prove that the upper bound is the same, P2, even for the full pointer arithmetic but with a fixed pointer offset, where we allow any Boolean combinations of the elementary formulas (x=x+k0), (xleq x+k0), and (x<x+k0), and, in addition to the points-to formulas, we allow spatial formulas of the arrays the length of which is bounded by k0 and lists which length is bounded by k0, etc, where k0 is a fixed integer. However, if we allow a significantly more expressive form of pointer arithmetic - namely arbitrary Boolean combinations of elementary formulas over arbitrary pointer sums - then the complexity increase is relatively modest for satisfiability and quantifier-free entailment: they are still NP-complete and coNP-complete respectively, and the complexity appears to increase drastically for quantified entailments.
73 - Peter Baumgartner 2021
The paper introduces a knowledge representation language that combines the event calculus with description logic in a logic programming framework. The purpose is to provide the user with an expressive language for modelling and analysing systems that evolve over time. The approach is exemplified with the logic programming language as implemented in the Fusemate system. The paper extends Fusemates rule language with a weakly DL-safe interface to the description logic $cal ALCIF$ and adapts the event calculus to this extended language. This way, time-stamped ABoxes can be manipulated as fluents in the event calculus. All that is done in the frame of Fusemates concept of stratification by time. The paper provides conditions for soundness and completeness where appropriate. Using an elaborated example it demonstrates the interplay of the event calculus, description logic and logic programming rules for computing possible models as plausible explanations of the current state of the modelled system.
We consider multi-agent systems where agents actions and beliefs are determined aleatorically, or by the throw of dice. This system consists of possible worlds that assign distributions to independent random variables, and agents who assign probabilities to these possible worlds. We present a novel syntax and semantics for such system, and show that they generalise Modal Logic. We also give a sound and complete calculus for reasoning in the base semantics, and a sound calculus for the full modal semantics, that we conjecture to be complete. Finally we discuss some application to reasoning about game playing agents.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا