Do you want to publish a course? Click here

High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes

295   0   0.0 ( 0 )
 Added by Dawei Di
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Perovskite-based optoelectronic devices have gained significant attention due to their remarkable performance and low processing cost, particularly for solar cells. However, for perovskite light-emitting diodes (LEDs), non-radiative charge carrier recombination has limited electroluminescence (EL) efficiency. Here we demonstrate perovskite-polymer bulk heterostructure LEDs exhibiting record-high external quantum efficiencies (EQEs) exceeding 20%, and an EL half-life of 46 hours under continuous operation. This performance is achieved with an emissive layer comprising quasi-2D and 3D perovskites and an insulating polymer. Transient optical spectroscopy reveals that photogenerated excitations at the quasi-2D perovskite component migrate to lower-energy sites within 1 ps. The dominant component of the photoluminescence (PL) is primarily bimolecular and is characteristic of the 3D regions. From PL quantum efficiency and transient kinetics of the emissive layer with/without charge-transport contacts, we find non-radiative recombination pathways to be effectively eliminated. Light outcoupling from planar LEDs, as used in OLED displays, generally limits EQE to 20-30%, and we model our reported EL efficiency of over 20% in the forward direction to indicate the internal quantum efficiency (IQE) to be close to 100%. Together with the low drive voltages needed to achieve useful photon fluxes (2-3 V for 0.1-1 mA/cm2), these results establish that perovskite-based LEDs have significant potential for light-emission applications.



rate research

Read More

Solution-processed planar perovskite light-emitting diodes (LEDs) promise high-performance and cost-effective electroluminescent (EL) devices ideal for large-area display and lighting applications. Exploiting emission layers with high ratios of horizontal transition dipole moments (TDMs) is expected to boost photon outcoupling of planar LEDs. However, LEDs based on anisotropic perovskite nanoemitters remains to be inefficient (external quantum efficiency, EQE <5%), due to the difficulties of simultaneously controlling the orientations of TDMs, achieving high photoluminescence quantum yields (PLQYs) and realizing charge balance in the films of the assembled nanostructures. Here we demonstrate efficient EL from an in-situ grown continuous perovskite film comprising of a monolayer of face-on oriented nanoplatelets. The ratio of horizontal TDMs of the perovskite nanoplatelet films is ~84%, substantially higher than that of isotropic emitters (67%). The nanoplatelet film shows a high PLQY of ~75%. These merits enable LEDs with a peak EQE of 23.6%, representing the most efficient perovskite LEDs.
Organic light-emitting diodes (OLEDs) have successfully entered the display market and continue to be attractive for many other applications. As state-of-the-art OLEDs can reach an internal quantum efficiency (IQE) of almost 100 %, light outcoupling remains one of the major screws left to be turned. The fact that no superior outcoupling structure has been found underlines that further investigations are needed to understand their prospect. In this paper, we use two-dimensional titanium dioxide (2D TiO$_2$) block arrays as a model of an internal light outcoupling structure and investigate the influence of its geometrical parameters on achieving the highest external quantum efficiency (EQE) for OLEDs. The multivariable problem is evaluated with the visual assistance of scatter plots, which enables us to propose an optimal period range and block width-to-distance ratio. The highest EQE achieved is 45.2 % with internal and external structures. This work contributes to the highly desired prediction of ideal light outcoupling structures in the future.
171 - Fei Yan , Jun Xing , Guichuan Xing 2018
Lead-halide perovskites have been attracting attention for potential use in solid-state lighting. Following the footsteps of solar cells, the field of perovskite light-emitting diodes (PeLEDs) has been growing rapidly. Their application prospects in lighting, however, remain still uncertain due to a variety of shortcomings in device performance including their limited levels of luminous efficiency achievable thus far. Here we show high-efficiency PeLEDs based on colloidal perovskite nanocrystals (PeNCs) synthesized at room temperature possessing dominant first-order excitonic radiation (enabling a photoluminescence quantum yield of 71% in solid film), unlike in the case of bulk perovskites with slow electron-hole bimolecular radiative recombination (a second-order process). In these PeLEDs, by reaching charge balance in the recombination zone, we find that the Auger nonradiative recombination, with its significant role in emission quenching, is effectively suppressed in low driving current density range. In consequence, these devices reach a record high maximum external quantum efficiency of 12.9% reported to date and an unprecedentedly high power efficiency of 30.3 lm W-1 at luminance levels above 1000 cd m-2 as required for various applications. These findings suggest that, with feasible levels of device performance, the PeNCs hold great promise for their use in LED lighting and displays.
The magnetoelectroluminescence of conjugated organic polymer films is widely accepted to arise from a polaron pair mechanism, but their magnetoconductance is less well understood. Here we derive a new relationship between the experimentally measurable magnetoelectroluminescence and magnetoconductance and the theoretically calculable singlet yield of the polaron pair recombination reaction. This relationship is expected to be valid regardless of the mechanism of the magnetoconductance, provided the mobilities of the free polarons are independent of the applied magnetic field (i.e., provided one discounts the possibility of spin-dependent transport). We also discuss the semiclassical calculation of the singlet yield of the polaron pair recombination reaction for materials such as poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV), the hyperfine fields in the polarons of which can be extracted from light-induced electron spin resonance measurements. The resulting theory is shown to give good agreement with experimental data for both normal (H-) and deuterated (D-) DOO-PPV over a wide range of magnetic field strengths once singlet-triplet dephasing is taken into account. Without this effect, which has not been included in any previous simulation of magnetoelectroluminescence, it is not possible to reproduce the experimental data for both isotopologues in a consistent fashion. Our results also indicate that the magnetoconductance of DOO-PPV cannot be solely due to the effect of the magnetic field on the dissociation of polaron pairs.
This paper reviews recent progress in the synthesis of near-infrared (NIR) lead chalcogenide (PbX; PbX=PbS, PbSe, PbTe) quantum dots (QDs) and their applications in NIR QDs based light emitting diodes (NIR-QLEDs). It summarizes the strategies of how to synthesize high efficiency PbX QDs and how to realize high performance PbX based NIR-QLEDs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا