Do you want to publish a course? Click here

Constraining the microlensing effect on time delays with new time-delay prediction model in $H_{0}$ measurements

64   0   0.0 ( 0 )
 Added by Chih-Fan Chen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time-delay strong lensing provides a unique way to directly measure the Hubble constant ($H_{0}$). The precision of the $H_{0}$ measurement depends on the uncertainties in the time-delay measurements, the mass distribution of the main deflector(s), and the mass distribution along the line of sight. Tie and Kochanek (2018) have proposed a new microlensing effect on time delays based on differential magnification of the coherent accretion disc variability of the lensed quasar. If real, this effect could significantly broaden the uncertainty on the time delay measurements by up to $30%$ for lens systems such as PG1115+080, which have relatively short time delays and monitoring over several different epochs. In this paper we develop a new technique that uses the time-delay ratios and simulated microlensing maps within a Bayesian framework in order to limit the allowed combinations of microlensing delays and thus to lessen the uncertainties due to the proposed effect. We show that, under the assumption of Tie and Kochanek (2018), the uncertainty on the time-delay distance ($D_{Delta t}$, which is proportional to 1/$H_{0}$) of short time-delay ($sim18$ days) lens, PG1115+080, increases from $sim7%$ to $sim10%$ by simultaneously fitting the three time-delay measurements from the three different datasets across twenty years, while in the case of long time-delay ($sim90$ days) lens, the microlensing effect on time delays is negligible as the uncertainty on $D_{Delta t}$ of RXJ1131-1231 only increases from $sim2.5%$ to $sim2.6%$.



rate research

Read More

127 - Kai Liao 2020
Microlensing not only brings extra magnification lightcurves on top of the intrinsic ones but also shifts them in time domain, making the actual time-delays between images of strongly lensed active galactic nucleus change on the $sim$ day(s) light-crossing time scale of the emission region. The microlensing-induced time-delays would bias strong lens time-delay cosmography if uncounted. However, due to the uncertainties of the disk size and the disk model, the impact is hard to accurately estimate. In this work, we study how to reduce the bias with designed observation strategy based on a standard disk model. We find long time monitoring of the images could alleviate the impact since it averages the microlensing time-lag maps due to the peculia motion of the source relative to the lens galaxy. In addition, images in bluer bands correspond to smaller disk sizes and therefore benefit time-delay measurements as well. We conduct a simulation based on a PG 1115+080-like lensed quasar. The results show the time-delay dispersions caused by microlensing can be reduced by $sim40%$ with 20-year lightcurves while u band relative to r band reduces $sim75%$ of the dispersions. Nevertheless, such an effect can not be totally eliminated in any cases. Further studies are still needed to appropriately incorporate it in inferring an accurate Hubble constant.
We present the measurement of the Hubble Constant, $H_0$, with three strong gravitational lens systems. We describe a blind analysis of both PG1115+080 and HE0435-1223 as well as an extension of our previous analysis of RXJ1131-1231. For each lens, we combine new adaptive optics (AO) imaging from the Keck Telescope, obtained as part of the SHARP AO effort, with Hubble Space Telescope (HST) imaging, velocity dispersion measurements, and a description of the line-of-sight mass distribution to build an accurate and precise lens mass model. This mass model is then combined with the COSMOGRAIL measured time delays in these systems to determine $H_{0}$. We do both an AO-only and an AO+HST analysis of the systems and find that AO and HST results are consistent. After unblinding, the AO-only analysis gives $H_{0}=82.8^{+9.4}_{-8.3}~rm km,s^{-1},Mpc^{-1}$ for PG1115+080, $H_{0}=70.1^{+5.3}_{-4.5}~rm km,s^{-1},Mpc^{-1}$ for HE0435-1223, and $H_{0}=77.0^{+4.0}_{-4.6}~rm km,s^{-1},Mpc^{-1}$ for RXJ1131-1231. The joint AO-only result for the three lenses is $H_{0}=75.6^{+3.2}_{-3.3}~rm km,s^{-1},Mpc^{-1}$. The joint result of the AO+HST analysis for the three lenses is $H_{0}=76.8^{+2.6}_{-2.6}~rm km,s^{-1},Mpc^{-1}$. All of the above results assume a flat $Lambda$ cold dark matter cosmology with a uniform prior on $Omega_{textrm{m}}$ in [0.05, 0.5] and $H_{0}$ in [0, 150] $rm km,s^{-1},Mpc^{-1}$. This work is a collaboration of the SHARP and H0LiCOW teams, and shows that AO data can be used as the high-resolution imaging component in lens-based measurements of $H_0$. The full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper.
67 - Kai Liao 2020
Due to the finite size of the disk and the temperature fluctuations producing the variability, microlensing changes the actual time delays between images of strongly lensed AGN on the $sim$day(s) light-crossing time scale of the emission region. This microlensing-induced time delay depends on the disk model, primarily the disk size $R_mathrm{disk}$ which has been found to be larger than predicted by the thin-disk model. In this work, we propose that light curves measured in different bands will give different time delays since $R_mathrm{disk}$ is a function of wavelength, and by measuring the time delay differences between bands, one can 1) directly verify such an new effect; 2) test the thin-disk model of quasars. For the second goal, our method can avoid the potential inconsistency between multi-band light curves that may bias the results by continuum reverberation mapping. We conduct a simulation based on a PG 1115+080-like lensed quasar, calculating the theoretical distributions of time delay differences between two bands: u and i centered around 354nm and 780nm, under and beyond the thin-disk model, respectively. Assuming the disk size is twice larger than the standard one, we find that with a precision of 2 days in the time delay difference measurements, the microlensing time delay effect can be verified with $sim4$ measurements while with $sim35$ measurements the standard model can be excluded. This approach could be realized in the ongoing and upcoming multi-band wide-field surveys with follow-up observations.
Time-delay cosmography with gravitationally lensed quasars plays an important role in anchoring the absolute distance scale and hence measuring the Hubble constant, $H_{0}$, independent of traditional distance ladder methodology. A current potential limitation of time delay distance measurements is the mass-sheet transformation (MST) which leaves the lensed imaging unchanged but changes the distance measurements and the derived value of $H_0$. In this work we show that the standard method of addressing the MST in time delay cosmography, through a combination of high-resolution imaging and the measurement of the stellar velocity dispersion of the lensing galaxy, depends on the assumption that the ratio, $D_{rm s}/D_{rm ds}$, of angular diameter distances to the background quasar and between the lensing galaxy and the quasar can be constrained. This is typically achieved through the assumption of a particular cosmological model. Previous work (TDCOSMO IV) addressed the mass-sheet degeneracy and derived $H_{0}$ under the assumption of $Lambda$CDM model. In this paper we show that the mass sheet degeneracy can be broken without relying on a specific cosmological model by combining lensing with relative distance indicators such as supernovae type Ia and baryon acoustic oscillations, which constrain the shape of the expansion history and hence $D_{rm s}/D_{rm ds}$. With this approach, we demonstrate that the mass-sheet degeneracy can be constrained in a cosmological-model-independent way, and hence model-independent distance measurements in time-delay cosmography under mass-sheet transformations can be obtained.
We present the first year of Hubble Space Telescope imaging of the unique supernova (SN) Refsdal, a gravitationally lensed SN at z=1.488$pm$0.001 with multiple images behind the galaxy cluster MACS J1149.6+2223. The first four observed images of SN Refsdal (images S1-S4) exhibited a slow rise (over ~150 days) to reach a broad peak brightness around 20 April, 2015. Using a set of light curve templates constructed from SN 1987A-like peculiar Type II SNe, we measure time delays for the four images relative to S1 of 4$pm$4 (for S2), 2$pm$5 (S3), and 24$pm$7 days (S4). The measured magnification ratios relative to S1 are 1.15$pm$0.05 (S2), 1.01$pm$0.04 (S3), and 0.34$pm$0.02 (S4). None of the template light curves fully captures the photometric behavior of SN Refsdal, so we also derive complementary measurements for these parameters using polynomials to represent the intrinsic light curve shape. These more flexible fits deliver fully consistent time delays of 7$pm$2 (S2), 0.6$pm$3 (S3), and 27$pm$8 days (S4). The lensing magnification ratios are similarly consistent, measured as 1.17$pm$0.02 (S2), 1.00$pm$0.01 (S3), and 0.38$pm$0.02 (S4). We compare these measurements against published predictions from lens models, and find that the majority of model predictions are in very good agreement with our measurements. Finally, we discuss avenues for future improvement of time delay measurements -- both for SN Refsdal and for other strongly lensed SNe yet to come.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا