Do you want to publish a course? Click here

Nanotesla-level, shield-less, field-compensation-free, wave-mixing-enhanced body-temperature atomic magnetometry for biomagnetism

90   0   0.0 ( 0 )
 Added by Eric Zhu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an optical inelastic-wave-mixing-enhanced atomic magnetometry technique that results in nT-level magnetic field detection at temperatures compatible with the human body without magnetic shielding, zero-field compensation, or high-frequency modulated phase-locking spectroscopy. Using Gaussian magnetic pulses that mimic the transient magnetic field produced by an action potential on a frogs nerve, we demonstrate more than 300,000-fold (550-fold) enhancement of magneto-optical rotation signal power spectral-density (power amplitude) over the conventional single-beam $Lambda-$scheme atomic magnetometry method. This new technique may bring possibilities for extremely sensitive magnetic field imaging of biological systems accessible via an optical fiber in clinical environments.



rate research

Read More

172 - Min Jiang , Wenjie Xu , Qing Li 2020
Atomic magnetometers are highly sensitive detectors of magnetic fields that monitor the evolution of the macroscopic magnetic moment of atomic vapors, and opening new applications in biological, physical, and chemical science. However, the performance of atomic magnetometers is often limited by hidden systematic effects that may cause misdiagnosis for a variety of applications, e.g., in NMR and in biomagnetism. In this work, we uncover a hitherto unexplained interference effect in atomic magnetometers, which causes an important systematic effect to greatly deteriorate the accuracy of measuring magnetic fields. We present a standard approach to detecting and characterizing the interference effect in, but not limited to, atomic magnetometers. As applications of our work, we consider the effect of the interference in NMR structural determination and locating the brain electrophysiological symptom, and show that it will help to improve the measurement accuracy by taking interference effects into account. Through our experiments, we indeed find good agreement between our prediction and the asymmetric amplitudes of resonant lines in ultralow-field NMR spectra -- an effect that has not been understood so far. We anticipate that our work will stimulate interesting new researches for magnetic interference phenomena in a wide range of magnetometers and their applications.
Continuously monitored atomic spin-ensembles allow, in principle, for real-time sensing of external magnetic fields beyond classical limits. Within the linear-Gaussian regime, thanks to the phenomenon of measurement-induced spin-squeezing, they attain a quantum-enhanced scaling of sensitivity both as a function of time, $t$, and the number of atoms involved, $N$. In our work, we rigorously study how such conclusions based on Kalman filtering methods change when inevitable imperfections are taken into account: in the form of collective noise, as well as stochastic fluctuations of the field in time. We prove that even an infinitesimal amount of noise disallows the error to be arbitrarily diminished by simply increasing $N$, and forces it to eventually follow a classical-like behaviour in $t$. However, we also demonstrate that, thanks to the presence of noise, in most regimes the model based on a homodyne-like continuous measurement actually achieves the ultimate sensitivity allowed by the decoherence, yielding then the optimal quantum-enhancement. We are able to do so by constructing a noise-induced lower bound on the error that stems from a general method of classically simulating a noisy quantum evolution, during which the stochastic parameter to be estimated -- here, the magnetic field -- is encoded. The method naturally extends to schemes beyond the linear-Gaussian regime, in particular, also to ones involving feedback or active control.
Squeezed states of light have received renewed attention due to their applicability to quantum-enhanced sensing. To take full advantage of their reduced noise properties to enhance atomic-based sensors, it is necessary to generate narrowband near or on atomic resonance single-mode squeezed states of light. We have previously generated bright two-mode squeezed states of light, or twin beams, that can be tuned to resonance with the D1 line of $^{87}$Rb with a non-degenerate four-wave mixing (FWM) process in a double-lambda configuration in a $^{85}$Rb vapor cell. Here we report on the use of feedforward to transfer the amplitude quantum correlations present in the twin beams to a single beam for the generation of single-mode amplitude squeezed light. With this technique we obtain a single-mode squeezed state with a squeezing level of $-2.9pm0.1$ dB when it is tuned off-resonance and a level of $-2.0pm 0.1$ dB when it is tuned on resonance with the D1 $F=2$ to $F=2$ transition of $^{87}$Rb.
Silicon Carbide is a promising host material for spin defect based quantum sensors owing to its commercial availability and established techniques for electrical and optical microfabricated device integration. The negatively charged silicon vacancy is one of the leading spin defects studied in silicon carbide owing to its near telecom photoemission, high spin number, and nearly temperature independent ground state zero field splitting. We report the realization of nanoTesla shot-noise limited ensemble magnetometry based on optically detected magnetic resonance with the silicon vacancy in 4H silicon carbide. By coarsely optimizing the anneal parameters and minimizing power broadening, we achieved a sensitivity of 3.5 nT/$sqrt{Hz}$. This was accomplished without utilizing complex photonic engineering, control protocols, or applying excitation powers greater than a Watt. This work demonstrates that the silicon vacancy in silicon carbide provides a low-cost and simple approach to quantum sensing of magnetic fields.
State-of-the-art atomic clocks are based on the precise detection of the energy difference between two atomic levels, measured as a quantum phase accumulated in a given time interval. Optical-lattice clocks (OLCs) now operate at or near the standard quantum limit (SQL) that arises from the quantum noise associated with discrete measurement outcomes. While performance beyond the SQL has been achieved in microwave clocks and other atomic sensors by engineering quantum correlations (entanglement) between the atoms, the generation of entanglement on an optical-clock transition and operation of such a clock beyond the SQL represent major goals in quantum metrology that have never been demonstrated. Here we report creation of a many-atom entangled state on an optical transition, and demonstrate an OLC with an Allan deviation below the SQL. We report a metrological gain of $4.4^{+0.6}_{-0.4}$ dB over the SQL using an ensemble consisting of a few hundred 171Yb atoms, allowing us to reach a given stability $2.8{pm}0.3$ times faster than the same clock operated at the SQL. Our results should be readily applicable to other systems, thus enabling further advances in timekeeping precision and accuracy. Entanglement-enhanced OLCs will have many scientific and technological applications, including precision tests of the fundamental laws of physics, geodesy, or gravitational wave detection.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا