Do you want to publish a course? Click here

Uncovering substructure with wavelets: proof of concept using Abell 2744

65   0   0.0 ( 0 )
 Added by Johannes Schwinn
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A recent comparison of the massive galaxy cluster Abell 2744 with the Millennium XXL (MXXL) N-body simulation has hinted at a tension between the observed substructure distribution and the predictions of LambdaCDM. Follow-up investigations indicated that this could be due to the contribution from the host halo and the subhalo finding algorithm used. To be independent of any subhalo finding algorithm, we therefore investigate the particle data of the MXXL simulation directly. We propose a new method to find substructures in 2D mass maps using a wavelet transform, which treats the simulation and observations equally. Using the same criteria to define a subhalo in observations and simulated data, we find three Abell 2744 analogues in the MXXL simulation. Thus the observations in Abell 2744 are in agreement with the predictions of LambdaCDM. We investigate the reasons for the discrepancy between the results obtained from the SUBFIND and full particle data analyses. We find that this is due to incompatible substructure definitions in observations and SUBFIND.



rate research

Read More

82 - M. Jauzac 2016
We present a joint optical/X-ray analysis of the massive galaxy cluster Abell 2744 (z=0.308). Our strong- and weak-lensing analysis within the central region of the cluster, i.e., at R<1Mpc from the brightest cluster galaxy, reveals eight substructures, including the main core. All of these dark-matter halos are detected with a significance of at least 5sigma and feature masses ranging from 0.5 to 1.4x10^{14}Msun within R<150kpc. Merten et al. (2011) and Medezinski et al. (2016) substructures are also detected by us. We measure a slightly higher mass for the main core component than reported previously and attribute the discrepancy to the inclusion of our tightly constrained strong-lensing mass model built on Hubble Frontier Fields data. X-ray data obtained by XMM-Newton reveal four remnant cores, one of them a new detection, and three shocks. Unlike Merten et al. (2011), we find all cores to have both dark and luminous counterparts. A comparison with clusters of similar mass in the MXXL simulations yields no objects with as many massive substructures as observed in Abell 2744, confirming that Abell 2744 is an extreme system. We stress that these properties still do not constitute a challenge to $Lambda$CDM, as caveats apply to both the simulation and the observations: for instance, the projected mass measurements from gravitational lensing and the limited resolution of the sub-haloes finders. We discuss implications of Abell 2744 for the plausibility of different dark-matter candidates and, finally, measure a new upper limit on the self-interaction cross-section of dark matter of sigma_{DM}<1.28cm2/g(68% CL), in good agreement with previous results from Harvey et al. (2015).
280 - Matt S. Owers 2012
We identify four rare jellyfish galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in-situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst and AGN features. Most intriguingly, three of the jellyfish galaxies lie near ICM features associated with a merging Bullet-like subcluster and its shock front detected in Chandra X-ray images. We suggest that the high pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.
Context. As recently demonstrated, high-z submillimetre galaxies (SMGs) are the perfect background sample for tracing the mass density profiles of galaxies and clusters (baryonic and dark matter) and their time-evolution through gravitational lensing. Their magnification bias, a weak gravitational lensing effect, is a powerful tool for constraining the free parameters of a halo occupation distribution (HOD) model and potentially also some of the main cosmological parameters. Aims. The aim of this work is to test the capability of the magnification bias produced on high-z SMGs as a cosmological probe. We exploit cross-correlation data to constrain not only astrophysical parameters ($M_{min}$, $M_1$, and $alpha$), but also some of the cosmological ones ($Omega_m$, $sigma_8$, and $H_0$) for this proof of concept. Methods. The measured cross-correlation function between a foreground sample of GAMA galaxies with spectroscopic redshifts in the range 0.2 < z < 0.8 and a background sample of H-ATLAS galaxies with photometric redshifts >1.2 is modelled using the traditional halo model description that depends on HOD and cosmological parameters. These parameters are then estimated by performing a Markov chain Monte Carlo analysis using different sets of priors to test the robustness of the results and to study the performance of this novel observable with the current set of data Results. With our current results, $Omega_m$ and $H_0$ cannot be well constrained. However, we can set a lower limit of >0.24 at 95% confidence level (CL) on $Omega_m$ and we see a slight trend towards $H_0>70$ values. For our constraints on $sigma_8$ we obtain only a tentative peak around 0.75, but an interesting upper limit of $sigma_8lesssim 1$ at 95% CL. We also study the possibility to derive better constraints by imposing more restrictive priors on the astrophysical parameters.
The Hubble Frontier Fields (HFF) program combines the capabilities of the Hubble Space Telescope (HST) with the gravitational lensing of massive galaxy clusters to probe the distant Universe to an unprecedented depth. Here, we present the results of the first combined HST and Spitzer observations of the cluster Abell 2744. We combine the full near-infrared data with ancillary optical images to search for gravitationally lensed high-redshift (z > 6) galaxies. We report the detection of 15 I814-dropout candidates at z ~ 6-7 and one Y105-dropout at z ~ 8 in a total survey area of 1.43 arcmin^2 in the source plane. The predictions of our lens model allow us to also identify five multiply-imaged systems lying at redshifts between z ~ 6 and z ~ 8. Thanks to constraints from the mass distribution in the cluster, we were able to estimate the effective survey volume corrected for completeness and magnification effects. This was in turn used to estimate the rest-frame ultraviolet luminosity function (LF) at z ~ 6-8. Our LF results are generally in agreement with the most recent blank field estimates, confirming the feasibility of surveys through lensing clusters. Although based on a shallower observations than what will be achieved in the final dataset including the full ACS observations, the LF presented here extends down to Muv ~ -18.5 at z ~ 7 with one identified object at Muv ~ -15 thanks to the highly-magnified survey areas. This early study forecasts the power of using massive galaxy clusters as cosmic telescopes and its complementarity to blank fields.
616 - J. Merten , D. Coe , R. Dupke 2011
We present a detailed strong lensing, weak lensing and X-ray analysis of Abell 2744 (z = 0.308), one of the most actively merging galaxy clusters known. It appears to have unleashed `dark, `ghost, `bullet and `stripped substructures, each ~10^14 solar masses. The phenomenology is complex and will present a challenge for numerical simulations to reproduce. With new, multiband HST imaging, we identify 34 strongly-lensed images of 11 galaxies around the massive Southern `core. Combining this with weak lensing data from HST, VLT and Subaru, we produce the most detailed mass map of this cluster to date. We also perform an independent analysis of archival Chandra X-ray imaging. Our analyses support a recent claim that the Southern core and Northwestern substructure are post-merger and exhibit morphology similar to the Bullet Cluster viewed from an angle. From the separation between X-ray emitting gas and lensing mass in the Southern core, we derive a new and independent constraint on the self-interaction cross section of dark matter particles sigma/m <~ 3 pm 1 cm^2 g^-1. In the Northwestern substructure, the gas, dark matter, and galaxy components have become separated by much larger distances. Most curiously, the `ghost clump (primarily gas) leads the `dark clump (primarily dark matter) by more than 150 kpc. We propose an enhanced `ram-pressure slingshot scenario which may have yielded this reversal of components with such a large separation, but needs further confirmation by follow-up observations and numerical simulations. A secondary merger involves a second `bullet clump in the North and an extremely `stripped clump to the West. The latter appears to exhibit the largest separation between dark matter and X-ray emitting baryons detected to date in our sky.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا