Do you want to publish a course? Click here

Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs

92   0   0.0 ( 0 )
 Added by Shreyas Patankar
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

While all media can exhibit first-order conductivity describing current linearly proportional to electric field, $E$, the second-order conductivity, $sigma^{(2)}$ , relating current to $E^2$, is nonzero only when inversion symmetry is broken. Second order nonlinear optical responses are powerful tools in basic research, as probes of symmetry breaking, and in optical technology as the basis for generating currents from far-infrared to X-ray wavelengths. The recent surge of interest in Weyl semimetals with acentric crystal structures has led to the discovery of a host of $sigma^{(2)}$ -related phenomena in this class of materials, such as polarization-selective conversion of light to dc current (photogalvanic effects) and the observation of giant second-harmonic generation (SHG) efficiency in TaAs at photon energy 1.5 eV. Here, we present measurements of the SHG spectrum of TaAs revealing that the response at 1.5 eV corresponds to the high-energy tail of a resonance at 0.7 eV, at which point the second harmonic conductivity is approximately 200 times larger than seen in the standard candle nonlinear crystal, GaAs. This remarkably large SHG response provokes the question of ultimate limits on $sigma^{(2)}$ , which we address by a new theorem relating frequency-integrated nonlinear response functions to the third cumulant (or skewness) of the polarization distribution function in the ground state. This theorem provides considerable insight into the factors that lead to the largest possible second-order nonlinear response, specifically showing that the spectral weight is unbounded and potentially divergent when the possibility of next-neighbor hopping is included.



rate research

Read More

247 - B. Q. Lv , H. M. Weng , B. B. Fu 2015
Weyl semimetals are a class of materials that can be regarded as three-dimensional analogs of graphene breaking time reversal or inversion symmetry. Electrons in a Weyl semimetal behave as Weyl fermions, which have many exotic properties, such as chiral anomaly and magnetic monopoles in the crystal momentum space. The surface state of a Weyl semimetal displays pairs of entangled Fermi arcs at two opposite surfaces. However, the existence of Weyl semimetals has not yet been proved experimentally. Here we report the experimental realization of a Weyl semimetal in TaAs by observing Fermi arcs formed by its surface states using angle-resolved photoemission spectroscopy. Our first-principles calculations, matching remarkably well with the experimental results, further confirm that TaAs is a Weyl semimetal.
112 - M. R. Norman 2015
It is shown that the Weyl semimetal TaAs can have a significant polar vector contribution to its optical activity. This is quantified by ab initio calculations of the resonant x-ray diffraction at the Ta L1 edge. For the Bragg vector (400), this polar vector contribution to the circular intensity differential between left and right polarized x-rays is predicted to be comparable to that arising from linear dichroism. Implications this result has in regards to optical effects predicted for topological Weyl semimetals are discussed.
Symmetry plays a central role in conventional and topological phases of matter, making the ability to optically drive symmetry change a critical step in developing future technologies that rely on such control. Topological materials, like the newly discovered topological semimetals, are particularly sensitive to a breaking or restoring of time-reversal and crystalline symmetries, which affect both bulk and surface electronic states. While previous studies have focused on controlling symmetry via coupling to the crystal lattice, we demonstrate here an all-electronic mechanism based on photocurrent generation. Using second-harmonic generation spectroscopy as a sensitive probe of symmetry change, we observe an ultrafast breaking of time-reversal and spatial symmetries following femtosecond optical excitation in the prototypical type-I Weyl semimetal TaAs. Our results show that optically driven photocurrents can be tailored to explicitly break electronic symmetry in a generic fashion, opening up the possibility of driving phase transitions between symmetry-protected states on ultrafast time scales.
We report a polarized Raman study of Weyl semimetal TaAs. We observe all the optical phonons, with energies and symmetries consistent with our first-principles calculations. We detect additional excitations assigned to multiple-phonon excitations. These excitations are accompanied by broad peaks separated by 140~cm$^{-1}$ that are also most likely associated with multiple-phonon excitations. We also noticed a sizable B$_1$ component for the spectral background, for which the origin remains unclear.
76 - B. Xu , Y. M. Dai , L. X. Zhao 2015
We present a systematic study of both the temperature and frequency dependence of the optical response in TaAs, a material that has recently been realized to host the Weyl semimetal state. Our study reveals that the optical conductivity of TaAs features a narrow Drude response alongside a conspicuous linear dependence on frequency. The width of the Drude peak decreases upon cooling, following a $T^{2}$ temperature dependence which is expected for Weyl semimetals. Two linear components with distinct slopes dominate the 5-K optical conductivity. A comparison between our experimental results and theoretical calculations suggests that the linear conductivity below $sim$230~cm$^{-1}$ is a clear signature of the Weyl points lying in very close proximity to the Fermi energy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا