Do you want to publish a course? Click here

High Tc superconductivity in CaKFe$_4$As$_4$ in absence of nematic fluctuations

212   0   0.0 ( 0 )
 Added by Girsh Blumberg
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We employ polarization-resolved Raman spectroscopy to study multi-band stoichiometric superconductor CaKFe$_4$As$_4$. The B$_{2g}$ symmetry Raman response shows no signatures of Pomeranchuk-like electronic nematic fluctuations which is observed for many other Fe-based superconductors. In the superconducting state, we identify three pair-breaking peaks at 13.8, 16.9 and 21 meV and full spectral weight suppression at low energies. The pair-breaking peak energies in Raman response are about 20% lower than twice the gap energies as measured by single-particle spectroscopy, implying a sub-dominant $d$-wave symmetry interaction. We analyze the superconductivity induced phonon self-energy effects and give an estimation of weak electron-phonon coupling constant $lambda^Gamma$=0.0015.

rate research

Read More

Measurements of the London penetration depth and tunneling conductance in single crystals of the recently discovered stoicheometric, iron - based superconductor, CaKFe$_4$As$_4$ (CaK1144) show nodeless, two effective gap superconductivity with a larger gap of about 6-9 meV and a smaller gap of about 1-4 meV. Having a critical temperature, $T_{c,onset}approx$35.8 K, this material behaves similar to slightly overdoped Ba$_{1-x}$K$_x$)Fe$_2$As$_2$ (e.g. $x=$0.54, $T_c approx$ 34 K)---a known multigap $s_{pm}$ superconductor. We conclude that the superconducting behavior of stoichiometric CaK1144 demonstrates that two-gap $s_{pm}$ superconductivity is an essential property of high temperature superconductivity in iron - based superconductors, independent of the degree of substitutional disorder.
We present a comprehensive study of the critical current densities and the superconducting vortex phase diagram in the stoichiometric superconductor CaKFe$_4$As$_4$ which has a critical temperature of 35 K. We performed detailed magnetization measurements both of high quality single crystals for different orientations in an applied magnetic field up to 16 T and for a powder sample. We find an extremely large critical current density, Jc, up to 10$^8$ A/cm2 for single crystals when H||(ab) at 5 K, which remains robust in fields up to 16 T, being the largest of any other iron-based superconductor. The critical current density is reduced by a factor 10 in single crystals when H||c at 5 K and significantly suppressed by the presence of grain boundaries in the powder sample. We also observe the presence of the fishtail effect in the magnetic hysteresis loops of single crystals when H||c. The flux pinning force density and the pinning parameters suggest that the large critical current could be linked to the existence of point core and surface pinning. Based on the vortex phase diagram and the large critical current densities, CaKFe$_4$As$_4$ is now established as a potential iron-based superconductor candidate for practical applications.
We use polarized inelastic neutron scattering to study the spin-excitations anisotropy in the bilayer iron-based superconductor CaKFe$_4$As$_4$ ($T_c$ = 35 K). In the superconducting state, both odd and even $L-$modulations of spin resonance have been observed in our previous unpolarized neutron scattering experiments (T. Xie {it et al.} Phys. Rev. Lett. {bf 120}, 267003 (2018)). Here we find that the high-energy even mode ($sim 18$ meV) is isotropic in spin space, but the low-energy odd modes consist of a $c-$axis polarized mode around 9 meV along with another partially overlapped in-plane mode around 12 meV. We argue that such spin anisotropy is induced by the spin-orbit coupling in the spin-vortex-type fluctuations of this unique compound. The spin anisotropy is strongly affected by the superconductivity, where it is weak below 6 meV in the normal state and then transferred to higher energy and further enhanced in the odd mode of spin resonance below $T_c$.
We analyze the electronic properties of the recently discovered stoichiometric superconductor CaKFe$_4$As$_4$ by combining an ab initio approach and a projection of the band structure to a lowenergy tight-binding Hamiltonian, based on the maximally localized Wannier orbitals of the 3d Fe states. We identify the key symmetries as well as differences and similarities in the electronic structure between CaKFe$_4$As$_4$ and the parent systems CaFe$_2$As$_2$ and KFe$_2$As$_2$. In particular, we find CaKFe4As4 to have a significantly more quasi-two-dimensional electronic structure than the latter systems. Finally, we study the superconducting instabilities in CaKFe$_4$As$_4$ by employing the leading angular harmonics approximation (LAHA) and find two potential A$_{1g}$-symmetry representation of the superconducting gap to be the dominant instabilities in this system.
We discover a robust coexistence of superconductivity and ferromagnetism in an iron arsenide RbEuFe$_4$As$_4$. The new material crystallizes in an intergrowth structure of RbFe$_2$As$_2$ and EuFe$_2$As$_2$, such that the Eu sublattice turns out to be primitive instead of being body-centered in EuFe$_2$As$_2$. The FeAs layers, featured by asymmetric As coordinations, are hole doped due to charge homogenization. Our combined measurements of electrical transport, magnetization and heat capacity unambiguously and consistently indicate bulk superconductivity at 36.5 K in the FeAs layers and ferromagnetism at 15 K in the Eu sublattice. Interestingly, the Eu-spin ferromagnetic ordering belongs to a rare third-order transition, according to the Ehrenfest classification of phase transition. We also identify an additional anomaly at $sim$ 5 K, which is possibly associated with the interplay between superconductivity and ferromagnetism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا