Nonordinary edge criticaliy of two-dimensional quantum critical magnets


Abstract in English

Based on large-scale quantum Monte Carlo simulations, we examine the correlations along the edges of two-dimensional semi-infinite quantum critical Heisenberg spin-$1/2$ systems. In particular, we consider coupled quantum spin-dimer systems at their bulk quantum critical points, including the columnar-dimer model and the plaquette-square lattice. The alignment of the edge spins strongly affects these correlations and the corresponding scaling exponents, with remarkably similar values obtained for various quantum spin-dimer systems. We furthermore observe subtle effects on the scaling behavior from perturbing the edge spins that exhibit the genuine quantum nature of these edge states. Our observations furthermore challenge recent attempts that relate the edge spin criticality to the presence of symmetry-protected topological phases in such quantum spin systems.

Download