Do you want to publish a course? Click here

PILOT balloon-borne experiment in-flight performance

112   0   0.0 ( 0 )
 Added by Anna Mangilli
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon-borne experiment aiming at measuring the polarized emission of thermal dust at a wavelength of 240 mm (1.2 THz). A first PILOT flight (flight#1) of the experiment took place from Timmins, Ontario, Canada, in September 2015 and a second flight (flight#2) took place from Alice Springs, Australia in april 2017. In this paper, we present the inflight performance of the instrument during these two flights. We concentrate on performances during flight#2, but allude to flight#1 performances if significantly different. We first present a short description of the instrument and the flights. We determine the time constants of our detectors combining inflight information from the signal decay following high energy particle impacts (glitches) and of our internal calibration source. We use these time constants to deconvolve the data timelines and analyse the optical quality of the instrument as measured on planets. We then analyse the structure and polarization of the instrumental background. We measure the detector response flat field and its time variations using the signal from the residual atmosphere and of our internal calibration source. Finally, we analyze the detector noise spectral and temporal properties. The in-flight performances are found to be satisfactory and globally in line with expectations from ground calibrations. We conclude by assessing the expected in-flight sensitivity of the instrument in light of the above in-flight performances.



rate research

Read More

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 250-hour flight over Antarctica in December 2006 (BLAST06). As part of the calibration and pointing procedures, the red hypergiant star VY CMa was observed and used as the primary calibrator. Details of the overall BLAST06 calibration procedure are discussed. The 1-sigma absolute calibration is accurate to 10, 12, and 13% at the 250, 350, and 500 micron bands, respectively. The errors are highly correlated between bands resulting in much lower error for the derived shape of the 250-500 micron continuum. The overall pointing error is <5 rms for the 36, 42, and 60 beams. The performance of the optics and pointing systems is discussed.
In the 50 years since the advent of X-ray astronomy there have been many scientific advances due to the development of new experimental techniques for detecting and characterising X-rays. Observations of X-ray polarisation have, however, not undergone a similar development. This is a shortcoming since a plethora of open questions related to the nature of X-ray sources could be resolved through measurements of the linear polarisation of emitted X-rays. The PoGOLite Pathfinder is a balloon-borne hard X-ray polarimeter operating in the 25 - 240 keV energy band from a stabilised observation platform. Polarisation is determined using coincident energy deposits in a segmented array of plastic scintillators surrounded by a BGO anticoincidence system and a polyethylene neutron shield. The PoGOLite Pathfinder was launched from the SSC Esrange Space Centre in July 2013. A near-circumpolar flight was achieved with a duration of approximately two weeks. The flight performance of the Pathfinder design is discussed for the three Crab observations conducted. The signal-to-background ratio for the observations is shown to be 0.25$pm$0.03 and the Minimum Detectable Polarisation (99% C.L.) is (28.4$pm$2.2)%. A strategy for the continuation of the PoGOLite programme is outlined based on experience gained during the 2013 maiden flight.
EBEX was a long-duration balloon-borne experiment to measure the polarization of the cosmic microwave background. The experiment had three frequency bands centered at 150, 250, and 410 GHz and was the first to use a kilo-pixel array of transition edge sensor (TES) bolometers aboard a balloon platform; shortly after reaching float we operated 504, 342, and 109 TESs at each of the bands, respectively. We describe the design and characterization of the array and the readout system. We give the distributions of measured thermal conductances, normal resistances, and transition temperatures. With the exception of the thermal conductance at 150 GHz. We measured median low-loop-gain time constants $tau_{0}=$ 88, 46, and 57 ms and compare them to predictions. Two measurements of bolometer absorption efficiency show high ($sim$0.9) efficiency at 150 GHz and medium ($sim$0.35, and $sim$0.25) at the two higher bands, respectively. We measure a median total optical load of 3.6, 5.3 and 5.0 pW absorbed at the three bands, respectively. EBEX pioneered the use of the digital version of the frequency domain multiplexing (FDM) system which multiplexed the bias and readout of 16 bolometers onto two wires. We present accounting of the measured noise equivalent power. The median per-detector noise equivalent temperatures referred to a black body with a temperature of 2.725 K are 400, 920, and 14500 $mu$K$sqrt{s}$ for the three bands, respectively. We compare these values to our pre-flight predictions and to a previous balloon payload, discuss the sources of excess noise, and the path for a future payload to make full use of the balloon environment.
We present the results of integration and characterization of the SPIDER instrument after the 2013 pre-flight campaign. SPIDER is a balloon-borne polarimeter designed to probe the primordial gravitational wave signal in the degree-scale $B$-mode polarization of the cosmic microwave background. With six independent telescopes housing over 2000 detectors in the 94 GHz and 150 GHz frequency bands, SPIDER will map 7.5% of the sky with a depth of 11 to 14 $mu$K$cdot$arcmin at each frequency, which is a factor of $sim$5 improvement over Planck. We discuss the integration of the pointing, cryogenic, electronics, and power sub-systems, as well as pre-flight characterization of the detectors and optical systems. SPIDER is well prepared for a December 2014 flight from Antarctica, and is expected to be limited by astrophysical foreground emission, and not instrumental sensitivity, over the survey region.
The E and B Experiment (EBEX) was a long-duration balloon-borne cosmic microwave background polarimeter that flew over Antarctica in 2013. We describe the experiments optical system, receiver, and polarimetric approach, and report on their in-flight performance. EBEX had three frequency bands centered on 150, 250, and 410 GHz. To make efficient use of limited mass and space we designed a 115 cm$^{2}$sr high throughput optical system that had two ambient temperature mirrors and four anti-reflection coated polyethylene lenses per focal plane. All frequency bands shared the same optical train. Polarimetry was achieved with a continuously rotating achromatic half-wave plate (AHWP) that was levitated with a superconducting magnetic bearing (SMB). Rotation stability was 0.45 % over a period of 10 hours, and angular position accuracy was 0.01 degrees. This is the first use of a SMB in astrophysics. The measured modulation efficiency was above 90 % for all bands. To our knowledge the 109 % fractional bandwidth of the AHWP was the broadest implemented to date. The receiver that contained one lens and the AHWP at a temperature of 4 K, the polarizing grid and other lenses at 1 K, and the two focal planes at 0.25 K performed according to specifications giving focal plane temperature stability with fluctuation power spectrum that had $1/f$ knee at 2 mHz. EBEX was the first balloon-borne instrument to implement technologies characteristic of modern CMB polarimeters including high throughput optical systems, and large arrays of transition edge sensor bolometric detectors with mutiplexed readouts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا