Hadronic effects on the $ccbar{q}bar{q}$ tetraquark state in relativistic heavy ion collisions


Abstract in English

We study the hadronic effects on the $ccbar{q}bar{q}$ tetraquark state by focusing on the $T_{cc}(1^+)$ meson during the hadronic stage of relativistic heavy ion collisions. We evaluate the absorption cross section of the $T_{cc}$ meson by pions in the quasi-free approximation, and investigate the time evolution of the $T_{cc}$ abundance in the hadronic medium based on the effective volume and temperature of the hadronic phase at both RHIC and LHC modelled by hydrodynamic calculations with the lattice equation of state. We probe two possible scenarios for the structure of $T_{cc}$, where it is assumed to be either a compact multiquark state or a larger sized molecular configuration composed of DD*. Our numerical results suggest that the hadronic effects on the $T_{cc}$ production is insignificant, and its final abundance depends on the initial yield of $T_{cc}$ produced from the quark-gluon plasma phase, which will depend on the assumed structure of the state.

Download