Do you want to publish a course? Click here

Seeing Black Holes : from the Computer to the Telescope

75   0   0.0 ( 0 )
 Added by Jean-Pierre Luminet
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Astronomical observations are about to deliver the very first telescopic image of the massive black hole lurking at the Galactic Center. The mass of data collected in one night by the Event Horizon Telescope network, exceeding everything that has ever been done in any scientific field, should provide a recomposed image during 2018. All this, forty years after the first numerical simulations done by the present author.



rate research

Read More

Any abundance of black holes that was present in the early universe will evolve as matter, making up an increasingly large fraction of the total energy density as space expands. This motivates us to consider scenarios in which the early universe included an era that was dominated by low-mass ($M < 5times 10^8$ g) black holes which evaporate prior to primordial nucleosynthesis. In significant regions of parameter space, these black holes will become gravitationally bound within binary systems, and undergo mergers before evaporating. Such mergers result in three potentially observable signatures. First, any black holes that have undergone one or more mergers will possess substantial angular momentum, causing their Hawking evaporation to produce significant quantities of high-energy gravitons. These products of Hawking evaporation are predicted to constitute a background of hot ($sim$eV-keV) gravitons today, with an energy density corresponding to $Delta N_{rm eff} sim 0.01-0.03$. Second, these mergers will produce a stochastic background of high-frequency gravitational waves. And third, the energy density of these gravitational waves can be as large as $Delta N_{rm eff} sim 0.3$, depending on the length of time between the mergers and evaporation. These signals are each potentially within the reach of future measurements.
Stellar evolution theory predicts a gap in the black hole birth function caused by the pair instability. Presupernova stars that have a core mass below some limiting value, Mlo, after all pulsational activity is finished, collapse to black holes, whereas more massive ones, up to some limiting value, Mhi, explode, promptly and completely, as pair-instability supernovae. Previous work has suggested Mlo is approximately 50 solar masses and Mhi is approximately 130 solar masses. These calculations have been challenged by recent LIGO observations that show many black holes merging with individual masses, Mlo is least some 65 solar masses. Here we explore four factors affecting the theoretical estimates for the boundaries of this mass gap: nuclear reaction rates, evolution in detached binaries, rotation, and hyper-Eddington accretion after black hole birth. Current uncertainties in reaction rates by themselves allow Mlo to rise to 64 solar masses and Mhi as large as 161 solar masses. Rapid rotation could further increase Mlo to about 70 solar masses, depending on the treatment of magnetic torques. Evolution in detached binaries and super-Eddington accretion can, with great uncertainty, increase Mlo still further. Dimensionless Kerr parameters close to unity are allowed for the more massive black holes produced in close binaries, though they are generally smaller.
Primordial black holes (PBHs) have been proposed to explain at least a portion of dark matter. Observations have put strong constraints on PBHs in terms of the fraction of dark matter which they can represent, $f_{rm PBH}$, across a wide mass range -- apart from the stellar-mass range of $20M_odotlesssim M_{rm PBH}lesssim 100M_odot$. In this paper, we explore the possibility that such PBHs could serve as point-mass lenses capable of altering the gravitational-wave (GW) signals observed from binary black hole (BBH) mergers along their line-of-sight. We find that careful GW data analysis could verify the existence of such PBHs based on the $fitting~factor$ and odds ratio analyses. When such a lensed GW signal is detected, we expect to be able to measure the redshifted mass of the lens with a relative error $Delta M_{rm PBH}/M_{rm PBH}lesssim0.3$. If no such lensed GW events were detected despite the operation of sensitive GW detectors accumulating large numbers of BBH mergers, it would translate into a stringent constraint of $f_{rm PBH}lesssim 10^{-2}-10^{-5}$ for PBHs with a mass larger than $sim10M_odot$ by the Einstein Telescope after one year of running, and $f_{rm PBH}lesssim 0.2$ for PBHs with mass greater than $sim 50M_odot$ for advanced LIGO after ten years of running.
Dynamics in the throat of rapidly rotating Kerr black holes is governed by an emergent near-horizon conformal symmetry. The throat contains unstable circular orbits at radii extending from the ISCO down to the light ring. We show that they are related by conformal transformations to physical plunges and osculating trajectories. These orbits have angular momentum arbitrarily higher than that of ISCO. Using the conformal symmetry we compute analytically the radiation produced by the physical orbits. We also present a simple formula for the full self-force on such trajectories in terms of the self-force on circular orbits.
We show that accreting black hole systems could be sources for keV light dark matter flux through several different mechanisms. We discuss two types of systems: coronal thermal plasmas around supermassive black holes in active galactic nuclei (AGNs), and accretion disks of stellar-mass X-ray black hole binaries (BHBs). We explore how these black hole systems may produce keV light dark matter fluxes and find that in order to account for the XENON1T excess, the dark fluxes from the observed AGNs and BHBs sources have to exceed the Eddington limit. We also extend the black hole mass region to primordial black holes (PBHs) and discuss the possibility of contributing to keV light dark flux via superradiance or Hawking radiation of PBHs. Besides, black holes can be good accelerators to accrete and boost heavy dark matter particles. If considering collisions or dark electromagnetism, those particles could then escape and reach the benchmark speed of 0.1c at the XENON1T detector.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا