Do you want to publish a course? Click here

Finding and Characterizing Other Worlds: the Thermal-IR ELT Opportunity

66   0   0.0 ( 0 )
 Added by Michael Meyer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The next generation ground-based extremely large telescopes (ELTs) present incredible opportunities to discover and characterize diverse planetary systems, even potentially habitable worlds. Adaptive-optics assisted thermal-IR (3-14 micron) imaging is a powerful tool to study exoplanets with extant 6-12 meter telescopes. ELTs have the spatial resolution and sensitivity that offer an unparalleled expansion of the available discovery space. AO-assisted thermal-IR instruments on ELTs will be superior to JWST for high contrast imaging in the thermal-IR, and complementary to high contrast observations at shorter wavelengths, in space or with second-generation extreme AO instruments. With appropriate investments in instrumentation and pre-cursor observations, thermal-IR equipped ELTs could image the first terrestrial and super-earth planets around nearby stars, opening the door to characterization of potentially habitable planets from the ground and space.



rate research

Read More

One objective of a lander mission to Jupiters icy moon Europa is to detect liquid water within 30 km as well as characterizing the subsurface ocean. In order to satisfy this objective, water within the ice shell must also be identified. Inductive electromagnetic (EM) methods are optimal for water detection on Europa because even a small fraction of dissolved salts will make water orders of magnitude more electrically conductive than the ice shell. Compared to induction studies by the Galileo spacecraft, measurements of higher-frequency ambient EM fields are necessary to resolve the shallower depths of intrashell water. Although these fields have been mostly characterized by prior missions, their unknown source structures and plasma properties do not allow EM sounding using a single surface magnetometer or the orbit-to-surface magnetic transfer function, respectively. Instead, broadband EM sounding can be accomplished from a single surface station using the magnetotelluric (MT) method, which measures horizontal electric fields as well as the three-component magnetic field. We have developed a prototype Europa Magnetotelluric Sounder (EMS) to meet the measurement requirements in the relevant thermal, vacuum, and radiation environment. EMS comprises central electronics, a fluxgate magnetometer on a mast, and three ballistically deployed electrodes to measure differences in surface electric potential. In this paper, we describe EMS development and testing as well as providing supporting information on the concept of operations and calculations on water detectability. EMS can uniquely determine the occurrence of intrashell water on Europa, providing important constraints on habitability.
182 - M. Postman , W. Traub , J. Krist 2009
The Advanced Technology Large Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation UV-Optical-Near Infrared space telescope with an aperture size of 8 to 16 meters. ATLAST, using an internal coronagraph or an external occulter, can characterize the atmosphere and surface of an Earth-sized exoplanet in the Habitable Zone of long-lived stars at distances up to ~45 pc, including its rotation rate, climate, and habitability. ATLAST will also allow us to glean information on the nature of the dominant surface features, changes in cloud cover and climate, and, potentially, seasonal variations in surface vegetation. ATLAST will be able to visit up to 200 stars in 5 years, at least three times each, depending on the technique used for starlight suppression and the telescope aperture. More frequent visits can be made for interesting systems.
Combining high-contrast imaging with medium-resolution spectroscopy has been shown to significantly boost the direct detection of exoplanets. HARMONI, one of the first-light instruments to be mounted on ESOs ELT, will be equipped with a single-conjugated adaptive optics system to reach the diffraction limit of the ELT in H and K bands, a high-contrast module dedicated to exoplanet imaging, and a medium-resolution (up to R = 17 000) optical and near-infrared integral field spectrograph. Combined together, these systems will provide unprecedented contrast limits at separations between 50 and 400 mas. In this paper, we estimate the capabilities of the HARMONI high-contrast module for the direct detection of young giant exoplanets. We use an end-to-end model of the instrument to simulate observations based on realistic observing scenarios and conditions. We analyze these data with the so-called molecule mapping technique combined to a matched-filter approach, in order to disentangle the companions from the host star and tellurics, and increase the S/N of the planetary signal. We detect planets above 5-sigma at contrasts up to 16 mag and separations down to 75 mas in several spectral configurations of the instrument. We show that molecule mapping allows the detection of companions up to 2.5 mag fainter compared to state-of-the-art high-contrast imaging techniques based on angular differential imaging. We also demonstrate that the performance is not strongly affected by the spectral type of the host star, and that we reach close sensitivities for the best three quartiles of observing conditions at Armazones, which means that HARMONI could be used in near-critical observations during 60 to 70% of telescope time at the ELT. Finally, we simulate planets from population synthesis models to further explore the parameter space that HARMONI and its high-contrast module will soon open.
The search of life in the Universe is a fundamental problem of astrobiology and a major priority for NASA. A key area of major progress since the NASA Astrobiology Strategy 2015 (NAS15) has been a shift from the exoplanet discovery phase to a phase of characterization and modeling of the physics and chemistry of exoplanetary atmospheres, and the development of observational strategies for the search for life in the Universe by combining expertise from four NASA science disciplines including heliophysics, astrophysics, planetary science and Earth science. The NASA Nexus for Exoplanetary System Science (NExSS) has provided an efficient environment for such interdisciplinary studies. Solar flares, coronal mass ejections and solar energetic particles produce disturbances in interplanetary space collectively referred to as space weather, which interacts with the Earth upper atmosphere and causes dramatic impact on space and ground-based technological systems. Exoplanets within close in habitable zones around M dwarfs and other active stars are exposed to extreme ionizing radiation fluxes, thus making exoplanetary space weather (ESW) effects a crucial factor of habitability. In this paper, we describe the recent developments and provide recommendations in this interdisciplinary effort with the focus on the impacts of ESW on habitability, and the prospects for future progress in searching for signs of life in the Universe as the outcome of the NExSS workshop held in Nov 29 - Dec 2, 2016, New Orleans, LA. This is one of five Life Beyond the Solar System white papers submitted by NExSS to the National Academy of Sciences in support of the Astrobiology Science Strategy for the Search for Life in the Universe.
L-type and T-type dwarfs span the boundaries between main-sequence stars, brown dwarfs, and planetary-mass objects. For these reasons, L and T dwarfs are the perfect laboratories for exploring the relationship between planet formation and moon formation, and evidence suggests they may be swarming with close-in rocky satellites, though none have been found to date. The discovery of satellites orbiting L or T dwarfs will have transformative implications for the nature of planets, moons and even life in the Universe. These transiting satellites will be prime targets for characterization with NASAs James Webb Space Telescope. In this white paper, we discuss the scientific motivations behind searching for transiting satellites orbiting L and T dwarfs and argue that robotizing current 1-to-2-meter US optical/infrared (O/IR) facilities and equipping them with recently developed low-cost infrared imagers will enable these discoveries in the next decade. Furthermore, robotizing the 1-to-2-meter O/IR fleet is highly synergistic with rapid follow-up of transient and multi-messenger events.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا