Do you want to publish a course? Click here

A New Synthesis Approach for Carbon Nitrides: Poly (Triazine Imide) and Its Photocatalytic Properties

48   0   0.0 ( 0 )
 Added by Christian Klinke
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Poly (triazine imide) (PTI) is a material belonging to the group of carbon nitrides and has shown to have competitive properties compared to melon or g-C3N4, especially in photocatalysis. As most of the carbon nitrides PTI is usually synthesized by thermal or hydrothermal approaches. We present and discuss an alternative synthesis for PTI which exhibits a pH dependent solubility in aqueous solutions. This synthesis is based on the formation of radicals during electrolysis of an aqueous melamine solution, coupling of resulting melamine radicals and the final formation of PTI. We applied different characterization techniques to identify PTI as the product of this reaction and report the first liquid state NMR experiments on a triazine-based carbon nitride. We show that PTI has a relatively high specific surface area and a pH dependent adsorption of charged molecules. This tunable adsorption has a significant influence on the photocatalytic properties of PTI which we investigated in dye degradation experiments.



rate research

Read More

63 - Luneng zhao , Xizhi Shi , Jin Li 2020
The widely used crystal structures for both heptazine-based and triazine-based two-dimensional (2D) graphitic carbon nitride (g-C$_3$N$_4$) are the flat P-6m2 configurations. However, the experimentally synthesized 2D g-C$_3$N$_4$ possess thickness ranging in 0.2-0.5 nm, indicating that the theoretically used flat P-6m2 configurations are not the correct ground states. In this work, we propose three new corrugated structures P321, P3m1 and Pca21 with energies of 66 (86), 77 (87) and 78 (89) meV/atom lower than that of the corresponding heptazine-based (triazine-based) g-C$_3$N$_4$ in flat P-6m2 configuration, respectively. These corrugated structures have very similar periodic patterns to the flat P-6m2 ones and they are difficult to be distinguished from each other according to their top-views. The optimized thicknesses of the three corrugated structures ranging in 1.347-3.142 {AA} are in good agreement with the experimental results. The first-principles results show that these corrugated structural candidates are also semiconductors with band gaps slightly larger than those of the correspondingly flat P-6m2 ones. Furthermore, they possess also suitable band edge positions for sun-light-driven water-splitting at both $pH=0$ and $pH=7$ environments. Our results show that these three new structures are more promising candidates for the experimentally synthesized g-C$_3$N$_4$.
The peculiar electronic and optical properties of covalent organic frameworks (COFs) are largely determined by protonation, a ubiquitous phenomenon in the solution environment in which they are synthesized. The resulting effects are non-trivial and appear to be crucial for the intriguing functionalities of these materials. In the quantum-mechanical framework of time-dependent density-functional theory, we investigate from first principles the impact of protonation of triazine and amino groups in molecular building blocks of COFs in water solution. In all considered cases, we find that proton uptake leads to a gap reduction and to a reorganization of the electronic structure, driven by the presence of the proton and by the electrostatic attraction between the positively charged protonated species and the negative counterion in its vicinity. Structural distortions induced by protonation are found to play only a minor role. The interplay between band-gap renormalization and exciton binding strength determines the energy of the absorption onsets: when the former prevails on the latter, a red-shift is observed. Furthermore, the spatial and energetic rearrangement of the molecular orbitals upon protonation induces a splitting of the lowest-energy peaks and a decrease of their oscillator strength in comparison with the pristine counterparts. Our results offer quantitative and microscopic insight into the role of protonation on the electronic and optical properties of triazine derivatives as building blocks of COFs. As such, they contribute to rationalize the relationships between structure, property, and functionality of these materials.
Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks, recent experimental evidence favours the competing crystallite model in the case of amorphous silicon. In two-dimensional materials, however, the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition, of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model. We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.
We report the design, synthesis, structure, and properties of two complex layered phosphide nitrides, $Ak$Th$_2$Mn$_4$P$_4$N$_2$ ($Ak$ = Rb, Cs), which contain anti-fluorite-type [Mn$_2$P$_2$] bilayers separated by fluorite-type [Th2N2] layers as a result of the intergrowth between AkMn$_2$P$_2$ and ThMnPN. The new compounds are featured with an intrinsic hole doping associated with the interlayer charge transfer and a built-in chemical pressure from the [Th$_2$N$_2$] layers, both of which are reflected by the changes in the lattice and the atomic position of phosphorus. The measurements of magnetic susceptibility, electrical resistivity, and specific heat indicate existence of local moments as well as itinerant electrons in relation with d-p hybridizations. The expected dominant antiferromagnetic interactions with enhanced d-p hybridizations were demonstrated by the first-principles calculations only when additional Coulomb repulsions are included. The density of states at the Fermi level derived from the specific-heat analysis are 3.5 and 7.5 times of the calculated ones for Ak = Rb and Cs, respectively, suggesting strong electron correlations in the title compounds.
The nitride semiconductor materials GaN, AlN, and InN, and their alloys and heterostructures have been investigated extensively in the last 3 decades, leading to several technologically successful photonic and electronic devices. Just over the past few years, a number of new nitride materials have emerged with exciting photonic, electronic, and magnetic properties. Some examples are 2D and layered hBN and the III-V diamond analog cBN, the transition metal nitrides ScN, YN, and their alloys (e.g. ferroelectric ScAlN), piezomagnetic GaMnN, ferrimagnetic Mn4N, and epitaxial superconductor/semiconductor NbN/GaN heterojunctions. This article reviews the fascinating and emerging physics and science of these new nitride materials. It also discusses their potential applications in future generations of devices that take advantage of the photonic and electronic devices eco-system based on transistors, light-emitting diodes, and lasers that have already been created by the nitride semiconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا