Do you want to publish a course? Click here

From Coulomb excitation cross sections to non-resonant astrophysical rates in three-body systems: $^{17}$Ne case

96   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Coulomb and nuclear dissociation of $^{17}$Ne on light and heavy targets are studied theoretically. The dipole E1 strength function is determined in a broad energy range including energies of astrophysical interest. Dependence of the strength function on different parameters of the $^{17}$Ne ground state structure and continuum dynamics is analyzed in a three-body model. The discovered dependence plays an important role for studies of the strength functions for the three-body E1 dissociation and radiative capture. The constraints on the $[s^2]/[d^2]$ configuration mixing in $^{17}$Ne and on $p$-wave interaction in the $^{15}$O+$p$ channel are imposed based on experimental data for $^{17}$Ne Coulomb dissociation on heavy target.



rate research

Read More

Background: The breakout from the hot Carbon-Nitrogen-Oxigen (CNO) cycles can trigger the rp-process in type I x-ray bursts. In this environment, a competition between $^{15}text{O}(alpha,gamma){^{19}text{Ne}}$ and the two-proton capture reaction $^{15}text{O}(2p,gamma){^{17}text{Ne}}$ is expected. Purpose: Determine the three-body radiative capture reaction rate for ${^{17}text{Ne}}$ formation including sequential and direct, resonant and non-resonant contributions on an equal footing. Method: Two different discretization methods have been applied to generate $^{17}$Ne states in a full three-body model: the analytical transformed harmonic oscillator method and the hyperspherical adiabatic expansion method. The binary $p$--$^{15}$O interaction has been adjusted to reproduce the known spectrum of the unbound $^{16}$F nucleus. The dominant $E1$ contributions to the $^{15}text{O}(2p,gamma){^{17}text{Ne}}$ reaction rate have been calculated from the inverse photodissociation process. Results: Three-body calculations provide a reliable description of $^{17}$Ne states. The agreement with the available experimental data on $^{17}$Ne is discussed. It is shown that the $^{15}text{O}(2p,gamma){^{17}text{Ne}}$ reaction rates computed within the two methods agree in a broad range of temperatures. The present calculations are compared with a previous theoretical estimation of the reaction rate. Conclusions: It is found that the full three-body model provides a reaction rate several orders of magnitude larger than the only previous estimation. The implications for the rp-process in type I x-ray bursts should be investigated.
We use a three-body Continuum Discretized Coupled Channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term, and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation, and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li + 208Pb. For breakup, we investigate various aspects, such as the role of the alpha + t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the Coulomb and nuclear breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest a third method which could be efficiently used to address convergence problems at large angular momentum. For reaction cross sections, interference effects are smaller, and the nuclear contribution is dominant above the Coulomb barrier. We also draw attention on different definitions of the reaction cross section which exist in the literature, and which may induce small, but significant, differences in the numerical values.
We calculate, in a systematic way, the enhancement effect on antiproton-proton and antiproton-nucleus annihilation cross sections at low energy due to the initial state electrostatic interaction between the projectile and the target nucleus. This calculation is aimed at future comparisons between antineutron and antiproton annihilation rates on different targets, for the extraction of pure isospin channels.
Isotope-dependence of measured reaction cross sections in scattering of $^{28-32}$Ne isotopes from $^{12}$C target at 240 MeV/nucleon is analyzed by the double-folding model with the Melbourne $g$-matrix. The density of projectile is calculated by the mean-field model with the deformed Wood-Saxon potential. The deformation is evaluated by the antisymmetrized molecular dynamics. The deformation of projectile enhances calculated reaction cross sections to the measured values.
103 - Z. Papp 1997
We propose a three-potential formalism for the three-body Coulomb scattering problem. The corresponding integral equations are mathematically well-behaved and can succesfully be solved by the Coulomb-Sturmian separable expansion method. The results show perfect agreements with existing low-energy $n-d$ and $p-d$ scattering calculations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا