Do you want to publish a course? Click here

Towards radiologist-level cancer risk assessment in CT lung screening using deep learning

114   0   0.0 ( 0 )
 Added by Stojan Trajanovski
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Importance: Lung cancer is the leading cause of cancer mortality in the US, responsible for more deaths than breast, prostate, colon and pancreas cancer combined and it has been recently demonstrated that low-dose computed tomography (CT) screening of the chest can significantly reduce this death rate. Objective: To compare the performance of a deep learning model to state-of-the-art automated algorithms and radiologists as well as assessing the robustness of the algorithm in heterogeneous datasets. Design, Setting, and Participants: Three low-dose CT lung cancer screening datasets from heterogeneous sources were used, including National Lung Screening Trial (NLST, n=3410), Lahey Hospital and Medical Center (LHMC, n=3174) data, Kaggle competition data (from both stages, n=1595+505) and the University of Chicago data (UCM, a subset of NLST, annotated by radiologists, n=197). Relevant works on automated methods for Lung Cancer malignancy estimation have used significantly less data in size and diversity. At the first stage, our framework employs a nodule detector; while in the second stage, we use both the image area around the nodules and nodule features as inputs to a neural network that estimates the malignancy risk for the entire CT scan. We trained our two-stage algorithm on a part of the NLST dataset, and validated it on the other datasets. Results, Conclusions, and Relevance: The proposed deep learning model: (a) generalizes well across all three data sets, achieving AUC between 86% to 94%; (b) has better performance than the widely accepted PanCan Risk Model, achieving 11% better AUC score; (c) has improved performance compared to the state-of-the-art represented by the winners of the Kaggle Data Science Bowl 2017 competition on lung cancer screening; (d) has comparable performance to radiologists in estimating cancer risk at a patient level.



rate research

Read More

Early detection of lung cancer is essential in reducing mortality. Recent studies have demonstrated the clinical utility of low-dose computed tomography (CT) to detect lung cancer among individuals selected based on very limited clinical information. However, this strategy yields high false positive rates, which can lead to unnecessary and potentially harmful procedures. To address such challenges, we established a pipeline that co-learns from detailed clinical demographics and 3D CT images. Toward this end, we leveraged data from the Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions (MCL), which focuses on early detection of lung cancer. A 3D attention-based deep convolutional neural net (DCNN) is proposed to identify lung cancer from the chest CT scan without prior anatomical location of the suspicious nodule. To improve upon the non-invasive discrimination between benign and malignant, we applied a random forest classifier to a dataset integrating clinical information to imaging data. The results show that the AUC obtained from clinical demographics alone was 0.635 while the attention network alone reached an accuracy of 0.687. In contrast when applying our proposed pipeline integrating clinical and imaging variables, we reached an AUC of 0.787 on the testing dataset. The proposed network both efficiently captures anatomical information for classification and also generates attention maps that explain the features that drive performance.
The analysis of multi-modality positron emission tomography and computed tomography (PET-CT) images for computer aided diagnosis applications requires combining the sensitivity of PET to detect abnormal regions with anatomical localization from CT. Current methods for PET-CT image analysis either process the modalities separately or fuse information from each modality based on knowledge about the image analysis task. These methods generally do not consider the spatially varying visual characteristics that encode different information across the different modalities, which have different priorities at different locations. For example, a high abnormal PET uptake in the lungs is more meaningful for tumor detection than physiological PET uptake in the heart. Our aim is to improve fusion of the complementary information in multi-modality PET-CT with a new supervised convolutional neural network (CNN) that learns to fuse complementary information for multi-modality medical image analysis. Our CNN first encodes modality-specific features and then uses them to derive a spatially varying fusion map that quantifies the relative importance of each modalitys features across different spatial locations. These fusion maps are then multiplied with the modality-specific feature maps to obtain a representation of the complementary multi-modality information at different locations, which can then be used for image analysis. We evaluated the ability of our CNN to detect and segment multiple regions with different fusion requirements using a dataset of PET-CT images of lung cancer. We compared our method to baseline techniques for multi-modality image fusion and segmentation. Our findings show that our CNN had a significantly higher foreground detection accuracy (99.29%, p < 0.05) than the fusion baselines and a significantly higher Dice score (63.85%) than recent PET-CT tumor segmentation methods.
Clinical data elements (CDEs) (e.g., age, smoking history), blood markers and chest computed tomography (CT) structural features have been regarded as effective means for assessing lung cancer risk. These independent variables can provide complementary information and we hypothesize that combining them will improve the prediction accuracy. In practice, not all patients have all these variables available. In this paper, we propose a new network design, termed as multi-path multi-modal missing network (M3Net), to integrate the multi-modal data (i.e., CDEs, biomarker and CT image) considering missing modality with multiple paths neural network. Each path learns discriminative features of one modality, and different modalities are fused in a second stage for an integrated prediction. The network can be trained end-to-end with both medical image features and CDEs/biomarkers, or make a prediction with single modality. We evaluate M3Net with datasets including three sites from the Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions (MCL) project. Our method is cross validated within a cohort of 1291 subjects (383 subjects with complete CDEs/biomarkers and CT images), and externally validated with a cohort of 99 subjects (99 with complete CDEs/biomarkers and CT images). Both cross-validation and external-validation results show that combining multiple modality significantly improves the predicting performance of single modality. The results suggest that integrating subjects with missing either CDEs/biomarker or CT imaging features can contribute to the discriminatory power of our model (p < 0.05, bootstrap two-tailed test). In summary, the proposed M3Net framework provides an effective way to integrate image and non-image data in the context of missing information.
With an aging and growing population, the number of women requiring either screening or symptomatic mammograms is increasing. To reduce the number of mammograms that need to be read by a radiologist while keeping the diagnostic accuracy the same or better than current clinical practice, we develop Man and Machine Mammography Oracle (MAMMO) - a clinical decision support system capable of triaging mammograms into those that can be confidently classified by a machine and those that cannot be, thus requiring the reading of a radiologist. The first component of MAMMO is a novel multi-view convolutional neural network (CNN) with multi-task learning (MTL). MTL enables the CNN to learn the radiological assessments known to be associated with cancer, such as breast density, conspicuity, suspicion, etc., in addition to learning the primary task of cancer diagnosis. We show that MTL has two advantages: 1) learning refined feature representations associated with cancer improves the classification performance of the diagnosis task and 2) issuing radiological assessments provides an additional layer of model interpretability that a radiologist can use to debug and scrutinize the diagnoses provided by the CNN. The second component of MAMMO is a triage network, which takes as input the radiological assessment and diagnostic predictions of the first networks MTL outputs and determines which mammograms can be correctly and confidently diagnosed by the CNN and which mammograms cannot, thus needing to be read by a radiologist. Results obtained on a private dataset of 8,162 patients show that MAMMO reduced the number of radiologist readings by 42.8% while improving the overall diagnostic accuracy in comparison to readings done by radiologists alone. We analyze the triage of patients decided by MAMMO to gain a better understanding of what unique mammogram characteristics require radiologists expertise.
We developed an automated deep learning system to detect hip fractures from frontal pelvic x-rays, an important and common radiological task. Our system was trained on a decade of clinical x-rays (~53,000 studies) and can be applied to clinical data, automatically excluding inappropriate and technically unsatisfactory studies. We demonstrate diagnostic performance equivalent to a human radiologist and an area under the ROC curve of 0.994. Translated to clinical practice, such a system has the potential to increase the efficiency of diagnosis, reduce the need for expensive additional testing, expand access to expert level medical image interpretation, and improve overall patient outcomes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا