No Arabic abstract
The Planck catalogues of SZ sources, PSZ1 and PSZ2, are the largest catalogues of galaxy clusters selected through their SZ signature in the full sky. In 2013, we started a long-term observational program at Canary Island observatories with the aim of validating about 500 unconfirmed SZ sources. In this work we present results of the initial pre-screening of possible cluster counterparts using photometric and spectroscopic data of the Sloan Digital Sky Survey DR12. Our main aim is to identify previously unconfirmed PSZ2 cluster candidates and to contribute in determination of the actual purity and completeness of Planck SZ source sample. Using the latest version of the PSZ2 catalogue, we select all sources overlapping with the SDSS DR12 footprint and without redshift information. We validate these cluster fields following optical criteria (mainly distance with respect to the Planck pointing, magnitude of the brightest cluster galaxy and cluster richness) and combining them with the profiles of the Planck Compton y-maps. Together, this procedure allows for a more robust identification of optical counterparts compared to simply cross-matching with existing SDSS cluster catalogues that have been constructed from earlier SDSS Data Releases. The sample contains new redshifts for 37 Planck galaxy clusters that were not included in the original release of PSZ2 Planck catalogue. We detect three cases as possible multiple counterparts. We show that a combination of all available information (optical images and profile of SZ signal) can provide correct associations between the observed Planck SZ source and the optically identified cluster. We also show that Planck SZ detection is very sensitive even to high-z (z>0.5) clusters. In addition, we also present updated spectroscopic information for 34 Planck PSZ1 sources (33 previously photometrically confirmed and 1 new identification).
We evaluate the construction methodology of an all-sky catalogue of galaxy clusters detected through the Sunyaev-Zeldovich (SZ) effect. We perform an extensive comparison of twelve algorithms applied to the same detailed simulations of the millimeter and submillimeter sky based on a Planck-like case. We present the results of this SZ Challenge in terms of catalogue completeness, purity, astrometric and photometric reconstruction. Our results provide a comparison of a representative sample of SZ detection algorithms and highlight important issues in their application. In our study case, we show that the exact expected number of clusters remains uncertain (about a thousand cluster candidates at |b|> 20 deg with 90% purity) and that it depends on the SZ model and on the detailed sky simulations, and on algorithmic implementation of the detection methods. We also estimate the astrometric precision of the cluster candidates which is found of the order of ~2 arcmins on average, and the photometric uncertainty of order ~30%, depending on flux.
We present the first cluster catalog extracted from combined space-based (Planck) and ground-based (South Pole Telescope; SPT-SZ) millimeter data. We developed and applied a matched multi-filter (MMF) capable of dealing with the different transfer functions and resolutions of the two datasets. We verified that it produces results consistent with publications from Planck and SPT collaborations when applied on the datasets individually. We also verified that Planck and SPT-SZ cluster fluxes are consistent with each other. When applied blindly to the combined dataset, the MMF generated a catalog of 419 detections ($S/N>5$), of which 323 are already part of the SPT-SZ or PSZ2 catalogs; 54 are new SZ detections, which have been identified in other catalogs or surveys; and 42 are new unidentified candidates. The MMF takes advantage of the complementarity of the two datasets, Planck being particularly useful for detecting clusters at a low redshift ($z<0.3$), while SPT is efficient at finding higher redshift ($z>0.3$) sources. This work represents a proof of concept that blind cluster extraction can be performed on combined, inhomogeneous millimeter datasets acquired from space and ground. This result is of prime importance for planned ground-based cosmic microwave background (CMB) experiments (e.g., Simons Observatory, CMB-S4) and envisaged CMB space missions (e.g., PICO, Backlight) that will detect hundreds of thousands of clusters in the low mass regime ($M_{500} leqslant 10^{14} M_odot$), for which the various sources of intra-cluster emission (gas, dust, synchrotron) will be of the same order of magnitude and hence require broad ground and space frequency coverage with a comparable spatial resolution for adequate separation.
We define Baryon Acoustic Oscillation (BAO) distances $hat{d}_alpha(z, z_c)$, $hat{d}_z(z, z_c)$, and $hat{d}_/(z, z_c)$ that do not depend on cosmological parameters. These BAO distances are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From these BAO distances alone, or together with the correlation angle $theta_textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the cosmological parameters in several scenarios. We find $4.3 sigma$ tension between the BAO plus $theta_textrm{MC}$ data and a cosmology with flat space and constant dark energy density $Omega_textrm{DE}(a)$. Releasing one and/or the other of these constraints obtains agreement with the data. We measure $Omega_textrm{DE}(a)$ as a function of $a$.
We present a cosmic void catalog using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We take into account the survey boundaries, masks, and angular and radial selection functions, and apply the ZOBOV void finding algorithm to the galaxy catalog. We identify a total of 10,643 voids. After making quality cuts to ensure that the voids represent real underdense regions, we obtain 1,228 voids with effective radii spanning the range 20-100Mpc/h and with central densities that are, on average, 30% of the mean sample density. We relea
We demonstrate the usability of mm-wavelength imaging data obtained from the APEX-SZ bolometer array to derive the radial temperature profile of the hot intra-cluster gas out to radius r_500 and beyond. The goal is to study the physical properties of the intra-cluster gas by using a non-parametric de-projection method that is, aside from the assumption of spherical symmetry, free from modeling bias. We use publicly available X-ray imaging data from the XMM-Newton observatory and our Sunyaev-Zeldovich Effect (SZE) imaging data from the APEX-SZ experiment at 150 GHz to de-project the density and temperature profiles for the relaxed cluster Abell 2204. We derive the gas density, temperature and entropy profiles assuming spherical symmetry, and obtain the total mass profile under the assumption of hydrostatic equilibrium. For comparison with X-ray spectroscopic temperature models, a re-analysis of the recent Chandra observation is done with the latest calibration updates. Using the non-parametric modeling we demonstrate a decrease of gas temperature in the cluster outskirts, and also measure the gas entropy profile. These results are obtained for the first time independently of X-ray spectroscopy, using SZE and X-ray imaging data. The contribution of the SZE systematic uncertainties in measuring T_e at large radii is shown to be small compared to the Chandra systematic spectroscopic errors. The upper limit on M_200 derived from the non-parametric method is consistent with the NFW model prediction from weak lensing analysis.