Diagnosing Fractionalization from the Spin Dynamics of $Z_2$ Spin Liquids on the Kagome Lattice by Quantum Monte Carlo Simulations


Abstract in English

Based on large-scale quantum Monte Carlo simulations, we examine the dynamical spin structure factor of the Balents-Fisher-Girvin kagome lattice quantum spin-$1/2$ model, which is known to harbor an extended $Z_2$ quantum spin liquid phase. We use a correlation-matrix sampling scheme combined with a stochastic analytic continuation method to resolve the spectral functions of this anisotropic quantum spin model with a three-site unit-cell. Based on this approach, we monitor the spin dynamics throughout the phase diagram of this model, from the XY-ferromagnetic region to the $Z_2$ quantum spin liquid regime. In the latter phase, we identify a gapped two-spinon continuum in the transverse scattering channel, which is faithfully modeled by an effective spinon tight-binding model. Within the longitudinal channel, we identify gapped vison excitations and exhibit indications for the translational symmetry fractionalization of the visons via an enhanced spectral periodicity.

Download