Do you want to publish a course? Click here

Testing Larsons relationships in massive clumps

235   0   0.0 ( 0 )
 Added by Alessio Traficante
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We tested the validity of the three Larson relations in a sample of 213 massive clumps selected from the Herschel Hi-GAL survey and combined with data from the MALT90 survey of 3mm emission lines. The clumps have been divided in 5 evolutionary stages to discuss the Larson relations also as function of evolution. We show that this ensemble does not follow the three Larson relations, regardless of clump evolutionary phase. A consequence of this breakdown is that the virial parameter $alpha_{vir}$ dependence with mass (and radius) is only a function of the gravitational energy, independent of the kinetic energy of the system, and $alpha_{vir}$ is not a good descriptor of clump dynamics. Our results suggest that clumps with clear signatures of infall motions are statistically indistinguishable from clumps with no such signatures. The observed non-thermal motions are not necessarily ascribed to turbulence acting to sustain the gravity, but they may be due to the gravitational collapse at the clump scales. This seems particularly true for the most massive (M$geq$1000 M$_{odot}$) clumps in the sample, where also exceptionally high magnetic fields may not be enough to stabilize the collapse.

rate research

Read More

We have undertaken the largest survey for outflows within the Galactic Plane using simultaneously observed 13CO and C18O data. 325 out of a total of 919 ATLASGAL clumps have data suitable to identify outflows, and 225 (69+-3%) of them show high velocity outflows. The clumps with detected outflows show significantly higher clump masses (M_{clump}), bolometric luminosities (L_{bol}), luminosity-to-mass ratios (L_{bol}/M_{clump}) and peak H_2 column densities (N_{H_2}) compared to those without outflows. Outflow activity has been detected within the youngest quiescent clump (i.e.,70um weak) in this sample and we find that the outflow detection rate increases with M_{clump},L_{bol},L_{bol}/M_{clump} and N_{H_2},approaching 90% in some cases(uchii regions=93+-3%;masers=86+-4%;hchii regions=100%). This high detection rate suggests that outflows are ubiquitous phenomena of massive star formation. The mean outflow mass entrainment rate implies a mean accretion rate of ~10^{-4}M_odot,yr^{-1}, in full agreement with the accretion rate predicted by theoretical models of massive star formation. Outflow properties are tightly correlated with M_{clump},L_{bol} and L_{bol}/M_{clump},and show the strongest relation with the bolometric clump luminosity. This suggests that outflows might be driven by the most massive and luminous source within the clump. The correlations are similar for both low-mass and high-mass outflows over 7 orders of magnitude, indicating that they may share a similar outflow mechanism. Outflow energy is comparable to the turbulent energy within the clump, however, we find no evidence that outflows increase the level of clump turbulence as the clumps evolve. This implies that the origin of turbulence within clumps is fixed before the onset of star formation.
Thirty massive clumps associated with bright infrared sources were observed to detect the infall signatures and characterize infall properties in the envelope of the massive clumps by APEX telescope in CO(4-3) and C$^{17}$O(3-2) lines. Eighteen objects have blue profile in CO(4-3) line with virial parameters less than 2, suggesting that global collapse is taking place in these massive clumps. The CO(4-3) lines were fitted by the two-layer model in order to obtain infall velocities and mass infall rates. Derived mass infall rates are from 10$^{-3}$ to 10$^{-1}$ M$_{odot}$yr$^{-1}$. A positive relationship between clump mass and infall rate appears to indicate that gravity plays a dominant role in the collapsing process. Higher luminosity clump has larger mass infall rate, implying that the clump with higher mass infall rate has higher star formation rate.
214 - Renyue Cen 2020
From a new perspective, we re-examine self-gravity and turbulence jointly, in hopes of understanding the physical basis for one of the most important empirical relations governing clouds in the interstellar medium (ISM), the Larsons Relation relating velocity dispersion ($sigma_R$) to cloud size ($R$). We report on two key new findings. First, the correct form of the Larsons Relation is $sigma_R=alpha_v^{1/5}sigma_{pc}(R/1pc)^{3/5}$, where $alpha_v$ is the virial parameter of clouds and $sigma_{pc}$ is the strength of the turbulence, if the turbulence has the Kolmogorov spectrum. Second, the amplitude of the Larsons Relation, $sigma_{pc}$, is not universal, differing by a factor of about two between clouds on the Galactic disk and those at the Galactic center, evidenced by observational data.
Because the 157.74 micron [C II] line is the dominant coolant of star-forming regions, it is often used to infer the global star-formation rates of galaxies. By characterizing the [C II] and far-infrared emission from nearby Galactic star-forming molecular clumps, it is possible to determine whether extragalactic [C II] emission arises from a large ensemble of such clumps, and whether [C II] is indeed a robust indicator of global star formation. We describe [C II] and far-infrared observations using the FIFI-LS instrument on the SOFIA airborne observatory toward four dense, high-mass, Milky Way clumps. Despite similar far-infrared luminosities, the [C II] to far-infrared luminosity ratio, L([C II])/L(FIR) varies by a factor of at least 140 among these four clumps. In particular, for AGAL313.576+0.324, no [C II] line emission is detected despite a FIR luminosity of 24,000 L_sun. AGAL313.576+0.324 lies a factor of more than 100 below the empirical correlation curve between L([C II])/L(FIR) and S_ u (63 micron)/S_ u (158 micron) found for galaxies. AGAL313.576+0.324 may be in an early evolutionary protostellar phase with insufficient ultraviolet flux to ionize carbon, or in a deeply embedded ``hypercompact H II region phase where dust attenuation of UV flux limits the region of ionized carbon to undetectably small volumes. Alternatively, its apparent lack of cii, emission may arise from deep absorption of the cii, line against the 158 micron continuum, or self-absorption of brighter line emission by foreground material, which might cancel or diminish any emission within the FIFI-LS instruments broad spectral resolution element (~250 km/s)
We report a new analysis protocol for HCN hyperfine data, based on the PYSPECKIT package, and results of using this new protocol to analyse a sample area of seven massive molecular clumps from the Census of High- and Medium-mass Protostars (CHaMP) survey, in order to derive maps of column density for this species. There is a strong correlation between the HCN integrated intensity, IHCN, and previously reported IHCO+ in the clumps, but IN2H+ is not well correlated with either of these other two dense gas tracers. The four fitted parameters from PYSPECKIT in this region fall in the range of VLSR = 8-10 km/s, {sigma} V = 1.2-2.2 km/s, Tex = 4-15 K, and {tau} = 0.2-2.5. These parameters allow us to derive a column density map of these clouds, without limiting assumptions about the excitation or opacity. A more traditional (linear) method of converting IHCN to total mass column gives much lower clump masses than our results based on the hyperfine analysis. This is primarily due to areas in the sample region of low I, low Tex, and high {tau} . We conclude that there may be more dense gas in these massive clumps not engaged in massive star formation than previously recognized. If this result holds for other clouds in the CHaMP sample, it would have dramatic consequences for the calibration of the Kennicutt-Schmidt star formation laws, including a large increase in the gas depletion time-scale in such regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا