In this paper, we discuss a method of constructing separable representations of the $C^*$-algebras associated to strongly connected row-finite $k$-graphs $Lambda$. We begin by giving an alternative characterization of the $Lambda$-semibranching function systems introduced in an earlier paper, with an eye towards constructing such representations that are faithful. Our new characterization allows us to more easily check that examples satisfy certain necessary and sufficient conditions. We present a variety of new examples relying on this characterization. We then use some of these methods and a direct limit procedure to construct a faithful separable representation for any row-finite source-free $k$-graph.
We study purely atomic representations of C*-algebras associated to row-finite and source-free higher-rank graphs. We describe when purely atomic representations are unitarily equivalent and we give necessary and sufficient conditions for a purely atomic representation to be irreducible in terms of the associated projection valued measure. We also investigate the relationship between purely atomic representations, monic representations and permutative representations, and we describe when a purely atomic representation admits a decomposition consisting of permutative representations.
In this paper we define the notion of monic representation for the $C^*$-algebras of finite higher-rank graphs with no sources, and undertake a comprehensive study of them. Monic representations are the representations that, when restricted to the commutative $C^*$-algebra of the continuous functions on the infinite path space, admit a cyclic vector. We link monic representations to the $Lambda$-semibranching representations previously studied by Farsi, Gillaspy, Kang, and Packer, and also provide a universal representation model for nonnegative monic representations.
The representations of a $k$-graph $C^*$-algebra $C^*(Lambda)$ which arise from $Lambda$-semibranching function systems are closely linked to the dynamics of the $k$-graph $Lambda$. In this paper, we undertake a systematic analysis of the question of irreducibility for these representations. We provide a variety of necessary and sufficient conditions for irreducibility, as well as a number of examples indicating the optimality of our results. We also explore the relationship between irreducible $Lambda$-semibranching representations and purely atomic representations of $C^*(Lambda)$. Throughout the paper, we work in the setting of row-finite source-free $k$-graphs; this paper constitutes the first analysis of $Lambda$-semibranching representations at this level of generality.
We study dimension theory for the $C^*$-algebras of row-finite $k$-graphs with no sources. We establish that strong aperiodicity - the higher-rank analogue of condition (K) - for a $k$-graph is necessary and sufficient for the associated $C^*$-algebra to have topological dimension zero. We prove that a purely infinite $2$-graph algebra has real-rank zero if and only if it has topological dimension zero and satisfies a homological condition that can be characterised in terms of the adjacency matrices of the $2$-graph. We also show that a $k$-graph $C^*$-algebra with topological dimension zero is purely infinite if and only if all the vertex projections are properly infinite. We show by example that there are strongly purely infinite $2$-graphs algebras, both with and without topological dimension zero, that fail to have real-rank zero.
We study the structure and compute the stable rank of C*-algebras of finite higher-rank graphs. We completely determine the stable rank of the C*-algebra when the k-graph either contains no cycle with an entrance, or is cofinal. We also determine exactly which finite, locally convex k-graphs yield unital stably finite C*-algebras. We give several examples to illustrate our results.