We use numerically unbiased methods to show that the one-dimensional Hubbard model with periodically distributed on-site interactions already contains the minimal ingredients to display the phenomenon of magnetoresistance; i.e., by applying an external magnetic field, a dramatic enhancement on the charge transport is achieved. We reach this conclusion based on the computation of the Drude weight and of the single-particle density of states, applying twisted boundary condition averaging to reduce finite-size effects. The known picture that describes the giant magnetoresistance, by interpreting the scattering amplitudes of parallel or antiparallel polarized currents with local magnetizations, is obtained without having to resort to different entities; itinerant and localized charges are indistinguishable.