Do you want to publish a course? Click here

Quartz tuning-fork based carbon nanotube transfer into quantum device geometries

50   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the objective of integrating single clean, as-grown carbon nanotubes into complex circuits, we have developed a technique to grow nanotubes directly on commercially available quartz tuning forks using a high temperature CVD process. Multiple straight and aligned nanotubes bridge the >100um gap between the two tips. The nanotubes are then lowered onto contact electrodes, electronically characterized in situ, and subsequently cut loose from the tuning fork using a high current. First quantum transport measurements of the resulting devices at cryogenic temperatures display Coulomb blockade characteristics.



rate research

Read More

210 - Igor Todoshchenko 2016
Quartz tuning forks are high-quality mechanical oscillators widely used in low temperature physics as viscometers, thermometers and pressure sensors. We demonstrate that a fork placed in liquid helium near the surface of solid helium is very sensitive to the oscillations of the solid-liquid interface. We developed a double-resonance read-out technique which allowed us to detect oscillations of the surface with an accuracy of 1 Angs in 10 sec. Using this technique we have investigated crystallization waves in 4He down to 10 mK. In contrast to previous studies of crystallization waves, our measurement scheme has very low dissipation, on the order of 20 pW, which allows us to carry out experiments even at sub-mK temperatures. We propose to use this scheme in the search for crystallization waves in 3He, which exist only at temperatures well below 0.5 mK.
Commercial quartz oscillators of the tuning-fork type with a resonant frequency of ~32 kHz have been investigated in helium liquids. The oscillators are found to have at best Q values in the range 10^5-10^6, when measured in vacuum below 1.5 K. However, the variability is large and for very low temperature operation the sensor has to be preselected. We explore their properties in the regime of linear viscous hydrodynamic response in normal and superfluid 3He and 4He, by comparing measurements to the hydrodynamic model of the sensor.
Recently nanomechanical devices composed of a long stationary inner carbon nanotube and a shorter, slowly-rotating outer tube have been fabricated. In this Letter, we study the possibility of using such devices as adiabatic quantum pumps. Using the Brouwer formula, we employ a Greens function technique to determine the pumped charge from one end of the inner tube to the other, driven by the rotation of a chiral outer nanotube. We show that there is virtually no pumping if the chiral angle of the two nanotubes is the same, but for optimal chiralities the pumped charge can be a significant fraction of a theoretical upper bound.
In this Letter we demonstrate that Permalloy (Py), a widely used Ni/Fe alloy, forms contacts to carbon nanotubes (CNTs) that meet the requirements for the injection and detection of spin-polarized currents in carbon-based spintronic devices. We establish the material quality and magnetization properties of Py strips in the shape of suitable electrical contacts and find a sharp magnetization switching tunable by geometry in the anisotropic magnetoresistance (AMR) of a single strip at cryogenic temperatures. In addition, we show that Py contacts couple strongly to CNTs, comparable to Pd contacts, thereby forming CNT quantum dots at low temperatures. These results form the basis for a Py-based CNT spin-valve exhibiting very sharp resistance switchings in the tunneling magnetoresistance, which directly correspond to the magnetization reversals in the individual contacts observed in AMR experiments.
We investigate charge pumping in carbon nanotube quantum dots driven by the electric field of a surface acoustic wave. We find that at small driving amplitudes, the pumped current reverses polarity as the conductance is tuned through a Coulomb blockade peak using a gate electrode. We study the behavior as a function of wave amplitude, frequency and direction and develop a model in which our results can be understood as resulting from adiabatic charge redistribution between the leads and quantum dots on the nanotube.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا