Do you want to publish a course? Click here

English-Catalan Neural Machine Translation in the Biomedical Domain through the cascade approach

60   0   0.0 ( 0 )
 Added by No\\'e Casas
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This paper describes the methodology followed to build a neural machine translation system in the biomedical domain for the English-Catalan language pair. This task can be considered a low-resourced task from the point of view of the domain and the language pair. To face this task, this paper reports experiments on a cascade pivot strategy through Spanish for the neural machine translation using the English-Spanish SCIELO and Spanish-Catalan El Periodico database. To test the final performance of the system, we have created a new test data set for English-Catalan in the biomedical domain which is freely available on request.



rate research

Read More

Massively multilingual machine translation (MT) has shown impressive capabilities, including zero and few-shot translation between low-resource language pairs. However, these models are often evaluated on high-resource languages with the assumption that they generalize to low-resource ones. The difficulty of evaluating MT models on low-resource pairs is often due to lack of standardized evaluation datasets. In this paper, we present MENYO-20k, the first multi-domain parallel corpus with a special focus on clean orthography for Yor`uba--English with standardized train-test splits for benchmarking. We provide several neural MT benchmarks and compare them to the performance of popular pre-trained (massively multilingual) MT models both for the heterogeneous test set and its subdomains. Since these pre-trained models use huge amounts of data with uncertain quality, we also analyze the effect of diacritics, a major characteristic of Yor`uba, in the training data. We investigate how and when this training condition affects the final quality and intelligibility of a translation. Our models outperform massively multilingual models such as Google ($+8.7$ BLEU) and Facebook M2M ($+9.1$ BLEU) when translating to Yor`uba, setting a high quality benchmark for future research.
88 - Boxiang Liu , Liang Huang 2020
Machine translation requires large amounts of parallel text. While such datasets are abundant in domains such as newswire, they are less accessible in the biomedical domain. Chinese and English are two of the most widely spoken languages, yet to our knowledge a parallel corpus in the biomedical domain does not exist for this language pair. In this study, we develop an effective pipeline to acquire and process an English-Chinese parallel corpus, consisting of about 100,000 sentence pairs and 3,000,000 tokens on each side, from the New England Journal of Medicine (NEJM). We show that training on out-of-domain data and fine-tuning with as few as 4,000 NEJM sentence pairs improve translation quality by 25.3 (13.4) BLEU for en$to$zh (zh$to$en) directions. Translation quality continues to improve at a slower pace on larger in-domain datasets, with an increase of 33.0 (24.3) BLEU for en$to$zh (zh$to$en) directions on the full dataset.
With language models being deployed increasingly in the real world, it is essential to address the issue of the fairness of their outputs. The word embedding representations of these language models often implicitly draw unwanted associations that form a social bias within the model. The nature of gendered languages like Hindi, poses an additional problem to the quantification and mitigation of bias, owing to the change in the form of the words in the sentence, based on the gender of the subject. Additionally, there is sparse work done in the realm of measuring and debiasing systems for Indic languages. In our work, we attempt to evaluate and quantify the gender bias within a Hindi-English machine translation system. We implement a modified version of the existing TGBI metric based on the grammatical considerations for Hindi. We also compare and contrast the resulting bias measurements across multiple metrics for pre-trained embeddings and the ones learned by our machine translation model.
We present a parallel machine translation training corpus for English and Akuapem Twi of 25,421 sentence pairs. We used a transformer-based translator to generate initial translations in Akuapem Twi, which were later verified and corrected where necessary by native speakers to eliminate any occurrence of translationese. In addition, 697 higher quality crowd-sourced sentences are provided for use as an evaluation set for downstream Natural Language Processing (NLP) tasks. The typical use case for the larger human-verified dataset is for further training of machine translation models in Akuapem Twi. The higher quality 697 crowd-sourced dataset is recommended as a testing dataset for machine translation of English to Twi and Twi to English models. Furthermore, the Twi part of the crowd-sourced data may also be used for other tasks, such as representation learning, classification, etc. We fine-tune the transformer translation model on the training corpus and report benchmarks on the crowd-sourced test set.
Multimodal neural machine translation (NMT) has become an increasingly important area of research over the years because additional modalities, such as image data, can provide more context to textual data. Furthermore, the viability of training multimodal NMT models without a large parallel corpus continues to be investigated due to low availability of parallel sentences with images, particularly for English-Japanese data. However, this void can be filled with comparable sentences that contain bilingual terms and parallel phrases, which are naturally created through media such as social network posts and e-commerce product descriptions. In this paper, we propose a new multimodal English-Japanese corpus with comparable sentences that are compiled from existing image captioning datasets. In addition, we supplement our comparable sentences with a smaller parallel corpus for validation and test purposes. To test the performance of this comparable sentence translation scenario, we train several baseline NMT models with our comparable corpus and evaluate their English-Japanese translation performance. Due to low translation scores in our baseline experiments, we believe that current multimodal NMT models are not designed to effectively utilize comparable sentence data. Despite this, we hope for our corpus to be used to further research into multimodal NMT with comparable sentences.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا