We study the Dual Chiral Density Wave (DCDW) in nuclear matter using a hadronic model with the parity doublet structure. We first extend the ordinary DCDW ansatz so as to incorporate the effect of an explicit chiral symmetry breaking. Then via numerically evaluating and minimizing the effective potential, we determine the phase structure. We find, in addition to the ordinary DCDW phase where the space average of the chiral condensate vanishes, a new DCDW phase (sDCDW) with a nonvanishing space average depending on the value of the chiral invariant mass parameter.