Do you want to publish a course? Click here

Evidence for a New Component of High-Energy Solar Gamma-Ray Production

128   0   0.0 ( 0 )
 Added by Tim Linden
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The observed multi-GeV gamma-ray emission from the solar disk --- sourced by hadronic cosmic rays interacting with gas, and affected by complex magnetic fields --- is not understood. Utilizing an improved analysis of the Fermi-LAT data that includes the first resolved imaging of the disk, we find strong evidence that this emission is produced by two separate mechanisms. Between 2010-2017 (the rise to and fall from solar maximum), the gamma-ray emission is dominated by a polar component. Between 2008-2009 (solar minimum) this component remains present, but the total emission is instead dominated by a new equatorial component with a brighter flux and harder spectrum. Most strikingly, although 6 gamma rays above 100 GeV are observed during the 1.4 years of solar minimum, none are observed during the next 7.8 years. These features, along with a 30-50 GeV spectral dip which will be discussed in a companion paper, were not anticipated by theory. To understand the underlying physics, Fermi and HAWC observations of the imminent Cycle 25 solar minimum are crucial.



rate research

Read More

We report the detection of two new gamma-ray sources in the Fermi-LAT sky (Pass 8) at energies higher than 20 GeV, and confirmed at lower energies, using a source detection tool based on the Minimum Spanning Tree algorithm. One of these sources, at a Galactic latitude of about -4{deg}, is a new discovery, while the other was previously reported above 50 GeV in the 2FHL catalogue. We searched for archival multi-wavelength data of possible counterparts and found interesting candidates. Both objects are radio sources and their WISE infrared colours are typical of blazars. While for the former source no optical spectra are available, for the latter a puzzling optical spectrum corresponding to a white dwarf star is found in the 6dF database. We discuss the spectral energy distributions of both sources and possible interpretations.
The solar disk is a bright source of multi-GeV gamma rays, due to the interactions of hadronic cosmic rays with the solar atmosphere. However, the underlying production mechanism is not understood, except that its efficiency must be greatly enhanced by magnetic fields that redirect some cosmic rays from ingoing to outgoing before they interact. To elucidate the nature of this emission, we perform a new analysis of solar atmospheric gamma rays with 9 years of Fermi-LAT data, which spans nearly the full 11-year solar cycle. We detect significant gamma-ray emission from the solar disk from 1 GeV up to $gtrsim200$ GeV. The overall gamma-ray spectrum is much harder ($sim E_{gamma}^{-2.2}$) than the cosmic-ray spectrum ($sim E_{rm CR}^{-2.7}$). We find a clear anticorrelation between the solar cycle phase and the gamma-ray flux between 1-10 GeV. Surprisingly, we observe a spectral dip between $sim$30-50 GeV in an otherwise power-law spectrum. This was not predicted, is not understood, and may provide crucial clues to the gamma-ray emission mechanism. The flux above 100 GeV, which is brightest during the solar minimum, poses exciting opportunities for HAWC, LHAASO, IceCube, and KM3NeT.
Gamma-ray bursts (GRBs) are brief flashes of gamma rays, considered to be the most energetic explosive phenomena in the Universe. The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow -- produced by the interaction between the ejected matter and the circumburst medium -- slows down, and a gradual decrease in brightness is observed. GRBs typically emit most of their energy via gamma-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments. However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elussive. Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow -ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and gamma-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.
207 - E. Moulin , M. Cirelli , P. Panci 2013
New bounds on decaying Dark Matter are derived from the gamma-ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range of dark matter masses and a variety of decay modes, excluding half-lives up to about 10^26 to few 10^27 seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e+/- spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices are adopted. We also discuss future prospects for CTA bounds from Fornax which, contrary to the present H.E.S.S. constraints of (ii), may allow for an interesting improvement and may become better than those from the current or future extragalactic Fermi data.
The solar disk is among the brightest gamma-ray sources in the sky. It is also among the most mysterious. No existing model fully explains the luminosity, spectrum, time variability, and morphology of its emission. We perform the first analysis of solar-disk gamma rays over a full 11-year solar cycle, utilizing a powerful new method to differentiate solar signals from astrophysical backgrounds. We produce: (i) a robustly measured spectrum from 100 MeV to 100 GeV, reaching a precision of several percent in the 1-10 GeV range, (ii) new results on the anti-correlation between solar activity and gamma-ray emission, (iii) strong constraints on short-timescale variability, ranging from hours to years, and (iv) new detections of the equatorial and polar morphologies of high-energy gamma rays. Intriguingly, we find no significant energy dependence in the time variability of solar-disk emission, indicating that strong magnetic-field effects close to the solar surface, rather than modulation throughout the heliosphere, must primarily control the flux and morphology of solar-disk emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا