No Arabic abstract
The Fermi-LAT Galactic Center excess and the 511 keV positron-annihilation signal from the inner Galaxy bare a striking morphological similarity. We propose that both can be explained through a scenario in which millisecond pulsars produce the Galactic Center excess and their progenitors, low-mass X-ray binaries, the 511 keV signal. As a proof-of-principle we study a specific population synthesis scenario from the literature involving so-called ultracompact X-ray binaries. Moreover, for the first time, we quantitatively show that neutron star, rather than black hole, low-mass X-ray binaries can be responsible for the majority of the positrons. In this particular scenario binary millisecond pulsars can be both the source of the Fermi-LAT $gamma$-ray excess and the bulge positrons. Future avenues to test this scenario are discussed.
The Fermi satellite has recently detected gamma ray emission from the central regions of our Galaxy. This may be evidence for dark matter particles, a major component of the standard cosmological model, annihilating to produce high-energy photons. We show that the observed signal may instead be generated by millisecond pulsars that formed in dense star clusters in the Galactic halo. Most of these clusters were ultimately disrupted by evaporation and gravitational tides, contributing to a spherical bulge of stars and stellar remnants. The gamma ray amplitude, angular distribution, and spectral signatures of this source may be predicted without free parameters, and are in remarkable agreement with the observations. These gamma rays are from fossil remains of dispersed clusters, telling the history of the Galactic bulge.
The morphology and characteristics of the so-called GeV gamma-ray excess detected in the Milky Way lead us to speculate about a possible common origin with the 511 keV line mapped by the SPI experiment about ten years ago. In the previous version of our paper, we assumed 30 GeV dark matter particles annihilating into $b bar{b}$ and obtained both a morphology and a 511 keV flux (phi_{511 keV} ~ 10^{-3} ph/cm^2/s) in agreement with SPI observation. However our estimates assumed a negligible number density of electrons in the bulge which lead to an artificial increase in the flux (mostly due to negligible Coulomb losses in this configuration). Assuming a number density greater than $n_e > 10^{-3} cm^{-3}$, we now obtain a flux of 511 keV photons that is smaller than phi_{511 keV} ~ 10^{-6} ph/cm^2/s and is essentially in agreement with the 511 keV flux that one can infer from the total number of positrons injected by dark matter annihilations into $b bar{b}$. We thus conclude that -- even if 30 GeV dark matter particles were to exist-- it is impossible to establish a connexion between the two types of signals, even though they are located within the same 10 deg region in the galactic centre.
Gamma-ray data from the Fermi-Large Area Telescope reveal an unexplained, apparently diffuse, signal from the Galactic bulge. The origin of this Galactic Center Excess (GCE) has been debated with proposed sources prominently including self-annihilating dark matter and a hitherto undetected population of millisecond pulsars (MSPs). We use a binary population synthesis forward model to demonstrate that an MSP population arising from the accretion induced collapse of O-Ne white dwarfs in Galactic bulge binaries can naturally explain the GCE. Synchrotron emission from MSP-launched cosmic ray electrons and positrons seems also to explain the mysterious haze of hard-spectrum, non-thermal microwave emission from the inner Galaxy detected in WMAP and Planck data.
The Fermi Large Area Telescope has observed an excess of ~GeV energy gamma rays from the center of the Milky Way, which may arise from near-thermal dark matter annihilation. Firmly establishing the dark matter origin for this excess is however complicated by challenges in modeling diffuse cosmic-ray foregrounds as well as unresolved astrophysical sources, such as millisecond pulsars. Non-Poissonian Template Fitting (NPTF) is one statistical technique that has previously been used to show that at least some fraction of the GeV excess is likely due to a population of dim point sources. These results were recently called into question by Leane and Slatyer (2019), who showed that a synthetic dark matter annihilation signal injected on top of the real Fermi data is not recovered by the NPTF procedure. In this work, we perform a dedicated study of the Fermi data and explicitly show that the central result of Leane and Slatyer (2019) is likely driven by the fact that their choice of model for the Galactic foreground emission does not provide a sufficiently good description of the data. We repeat the NPTF analyses using a state-of-the-art model for diffuse gamma-ray emission in the Milky Way and introduce a novel statistical procedure, based on spherical-harmonic marginalization, to provide an improved description of the Galactic diffuse emission in a data-driven fashion. With these improvements, we find that the NPTF results continue to robustly favor the interpretation that the Galactic Center excess is due, in part, to unresolved astrophysical point sources across the analysis variations that we have explored.
The signature of positron annihilation, namely the 511 keV $gamma$-ray line, was first detected coming from the direction of the Galactic center in the 1970s, but the source of Galactic positrons still remains a puzzle. The measured flux of the annihilation corresponds to an intense steady source of positron production, with an annihilation rate on the order of $sim10^{43}$~e$^{+}$/s. The 511 keV emission is the strongest persistent Galactic $gamma$-ray line signal and it shows a concentration towards the Galactic center region. An additional low-surface brightness component is aligned with the Galactic disk; however, the morphology of the latter is not well constrained. The Compton Spectrometer and Imager (COSI) is a balloon-borne soft $gamma$-ray (0.2--5 MeV) telescope designed to perform wide-field imaging and high-resolution spectroscopy. One of its major goals is to further our understanding of Galactic positrons. COSI had a 46-day balloon flight in May--July 2016 from Wanaka, New Zealand, and here we report on the detection and spectral and spatial analyses of the 511 keV emission from those observations. To isolate the Galactic positron annihilation emission from instrumental background, we have developed a technique to separate celestial signals utilizing the COMPTEL Data Space. With this method, we find a 7.2$sigma$ detection of the 511 keV line. We find that the spatial distribution is not consistent with a single point source, and it appears to be broader than what has been previously reported.