In this paper, we give strong lower bounds on the size of the sets of products of matrices in some certain groups. More precisely, we prove an analogue of a result due to Chapman and Iosevich for matrices in $SL_2(mathbb{F}_p)$ with restricted entries on a small set. We also provide extensions of some recent results on expansion for cubes in Heisenberg group due to Hegyv{a}ri and Hennecart.