Expansion for the product of matrices in groups


Abstract in English

In this paper, we give strong lower bounds on the size of the sets of products of matrices in some certain groups. More precisely, we prove an analogue of a result due to Chapman and Iosevich for matrices in $SL_2(mathbb{F}_p)$ with restricted entries on a small set. We also provide extensions of some recent results on expansion for cubes in Heisenberg group due to Hegyv{a}ri and Hennecart.

Download