Do you want to publish a course? Click here

Developments of Multi-wavelength Spectro-Polarimeter on the Domeless Solar Telescope at Hida Observatory

105   0   0.0 ( 0 )
 Added by Tetsu Anan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

To obtain full Stokes spectra in multi-wavelength windows simultaneously, we developed a new spectro-polarimeter on the Domeless Solar Telescope at Hida Observatory. The new polarimeter consists of a 60 cm aperture vacuum telescope on an altazimuth mount, an image rotator, a high dispersion spectrograph, polarization modulator and analyzer composed of a continuously rotating waveplate with a retardation nearly constant around 127$^{circ}$ in 500 - 1100 nm and a polarizing beam splitter located closely behind the focus of the telescope, fast and large format CMOS cameras and an infrared camera. The slit spectrograph allows us to obtain spectra in as many wavelength windows as the number of cameras. We characterized the instrumental polarization of the entire system and established the polarization calibration procedure. The cross-talks among the Stokes Q,U and V are evaluated to be about 0.06% $sim$ 1.2% depending on the degree of the intrinsic polarizations. In a typical observing setup, a sensitivity of 0.03% can be achieved in 20 - 60 second for 500 nm - 1100 nm. The new polarimeter is expected to provide a powerful tool to diagnose the 3D magnetic field and other vector physical quantities in the solar atmosphere.



rate research

Read More

A cooperative observation with Hida observatory and Hinode satellite was performed on an emerging flux region. The successive Ca II K spectro-heliograms of the emerging flux region were taken by the Domeless Solar Telescope of Hida observatory. Hinode observed the emerging flux region with Ca II H and Fe I Stokes IQUV filtergrams. In this study, detailed dynamics and temporal evolution of the magnetic flux emergence was studied observationally. The event was first detected in the photospheric magnetic field signals. 3 minutes later, the horizontal expansion of the dark area was detected. And then, 7 minutes later than the horizontal expansion, the emerging loops were detected with the maximal rise speed of 2.1 km/s at chromospheric heights. The observed dynamics of emerging magnetic flux from the photosphere to the upper chromosphere is well consistent with the results of previous simulation works. The gradual rising phase of flux tubes with a weak magnetic strength was confirmed by our observation.
We present an analysis of polarimetric observations of standard stars performed over the period of more than three years with the RINGO3 polarimeter mounted on the Liverpool Telescope. The main objective was to determine the instrumental polarisation of the RINGO3 polarimeter in three spectral energy ranges: blue (350--640~nm), green (650--760~nm) and red (770--1000~nm). The observations were conducted between 2012 and 2016. The total time span of 1126 days was split into five epochs due to the hardware changes to the observing system. Our results should be applied to calibrate all polarimetric observations performed with the RINGO3 polarimeter.
PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2x8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3kx10.3k CCDs with 9-{mu}m pixels and peak quantum efficiencies of 96 % record a total of 92 echelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15% at 650 nm, and still 11% and 10% at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of 20th mag in V in the low-resolution mode. The R=120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100- {mu}m fibre through a projected sky aperture of 0.74, comparable to the median seeing of the LBT site. The 43000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Perot etalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we present the basic instrument design, its realization, and its characteristics.
The first observations with the 25 cm telescope of the Shumen Astronomical Observatory led to the following conclusions: (a) Intra-night observations of variable stars with an amplitude larger than 0.1 mag are possible down to 14 mag with an acceptable quality with this setup; (b) The equipment is suitable for observations of bright extended objects with sizes up to 30 arcmin (planets, comets, clusters, nebulae, galaxies) with resolution 0.88 arcsec/pix; (c) The guiding of telescope is very good which makes the equipment appropriate for prolonged patrols; (d) The observations with the 25 cm are already fully remote-controlled; (e) The determined transformation coefficients allow transfer from instrumental to standard photometric system BVRcIc and realization of differential photometry.
The immense volume of data generated by the suite of instruments on SDO requires new tools for efficient identifying and accessing data that is most relevant to research investigations. We have developed the Heliophysics Events Knowledgebase (HEK) to fill this need. The HEK system combines automated data mining using feature-detection methods and high-performance visualization systems for data markup. In addition, web services and clients are provided for searching the resulting metadata, reviewing results, and efficiently accessing the data. We review these components and present examples of their use with SDO data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا